By Joseph Odoi
In a significant step toward revolutionizing mosquito surveillance in Uganda, Dr. Peter Waiswa, Associate Professor of Health Policy Planning and Management at the School of Public Health, Makerere University has revealed that a new AI-driven mosquito surveillance project is set to be rolled out to strengthen vector monitoring efforts across 22 districts in Uganda.
He disclosed this while briefing a multidisciplinary team during a courtesy visit to the Ministry of Health on 7th August 2025 to engage with officials on the VectorCam Project.
The VectorCam Project is a partnership between the Makerere University School of Public Health, Johns Hopkins University, and the Ministry of Health, with funding from the Gates Foundation. The project seeks to revolutionize mosquito surveillance by shifting from manual, human-led identification to a digital, AI-driven mobile application using computer vision
What is VectorCam?
VectorCam is an innovative project focused on transforming how Uganda monitors malaria-carrying mosquitoes. At its core is a smartphone-based, AI-powered application that uses computer vision to quickly identify mosquitoes by species, sex, and feeding status whether a mosquito has fed recently or not. Traditionally, such analysis requires the expertise of entomologists and takes considerable time.
According to Prof Waiswa, VectorCam will advance ento. surveillance.
‘’We have worked with Johns Hopkins University and the Minister of Health to develop an AI-powered mobile application which can be used to identify mosquitoes. This apps tells you the type of mosquito, the sex of the mosquito, and whether the mosquito has a full abdomen or half abdomen or is empty. That is, if it fed last night or not.
This one is a way to just shift mosquito surveillance from people to an app. The app does it in 20 seconds using computer vision. It does it faster and better than any entomologist. Every district just has one Entomologist. So the entomologist can go and focus on other things as part of his work because nowadays an app can do it.
The good thing with the app is we’ve already done a big trial funded by the Gates Foundation and we have evidence that it works. The app also posts data and makes it accessible through the DHIS to the districts but also at the national level’’ Prof. Waiswa explained.
‘’With support and funding from the Gates Foundation, we are going to be scaling up the Vector Cam Project to 22 districts. In 12 of these, we will conduct research to evaluate how the app actually performs at scale in routine life settings ‘’ Prof Waiswa stated about the next project step.
As part of the project engagement, Prof. Waiswa met with Dr. Daniel Kyabayinze, Director of Public Health at the National Malaria Control Division, Ministry of Health, Uganda, who also serves as the Acting Program Manager for Malaria at the National Malaria Control Program (NMCP) to brief him on the project genesis and its next objectives which will lead to data-driven decision making to tailor vector control interventions.
Also in attendance were also; Professor Soumyadipta Acharya a respected researcher in the field of ento. surveillance from Johns Hopkins University, United States, along with representatives from the Ministry of Health and Makerere University.
More About VectorCam Project
VectorCAM is an innovative project focused on transforming how Uganda monitors malaria-carrying mosquitoes. At its core is a smartphone-based, AI-powered application that uses computer vision to quickly identify mosquitoes by species, sex, and feeding status.
Between November 2022 and April 2024, Makerere University, in partnership with Johns Hopkins University and Uganda’s National Malaria Control Programme (NMCP), successfully implemented the first phase of the VectorCam Project. Through this, the project piloted the VectorCAM an AI-driven mobile application that uses computer vision to identify mosquitoes by species, sex, and abdominal status providing rapid, cost-effective entomological surveillance in malaria-endemic regions.
Following the successful trial and validation of the technology, the project is now entering a new phase focused on scaling up.
VectorCam will be rolled out across 22 districts in Uganda, with operational research embedded in 12 of those districts to assess its performance.