Epidemiology of African swine fever in wild and domestic swine; factors for its persistence in Uganda

Denis Muhangi (PhD Candidate) 19th Nov 2013

Kampala

African swine fever (ASF) overview

large DNA virus, genus Asfivirus (family Asfarviridae)

- Up to 22 genotypes
- OIE listed viral disease
- Acute, highly contagious in domestic pigs
- High mortality, reaching 100%
- No vaccines and no treatment
- Emerging trans-boundary disease
- Endemic in large parts of SSA including Uganda
- Pigs are increasingly becoming a source of income for small holders (poverty reduction) as demand for pork increases.
- ASF a constraint in development of the pig industry.



Epidemiology

- Clinical disease_domestic pigs (Pig-pig cycle)
- Wild boars (Europe) and the Caucasus
- Sylvatic cycle-Warthogs, soft ticks (Ornithodoros moubata).
- Other wild suidaebush pigs, giant forest hogs.

Kampala

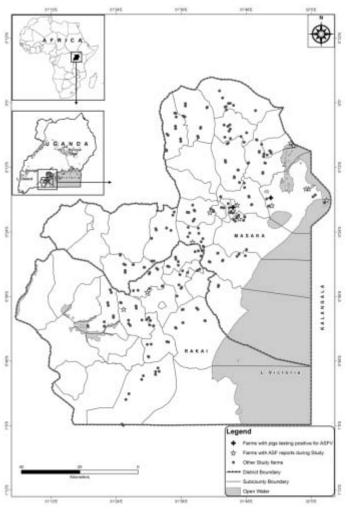
Objectives:

Main Objective:

Provide information on epidemiology of ASF in Uganda & factors for its persistence.

Specific objectives:

- Investigate the dynamics of transmission of ASF in domestic pig production systems.
- (2) Investigate the risk factors for ASF along the domestic pig value chain.
- (3) Assess the role of wildlife (wild pigs and soft-ticks) in transmission of ASF.
- (4) Assessment of genetic variability of ASF virus isolated from different hosts and places.

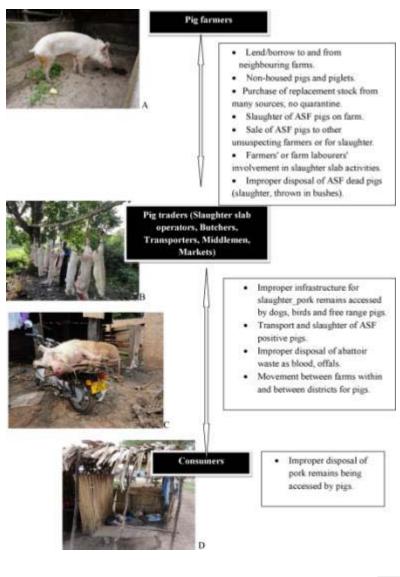


Objective 1: Investigating dynamics of transmission of ASF in domestic pig production systems.

- Study area: Masaka and Rakai
- Questionnaire survey and blood/serum samples from pigs

Findings

- Risk factors; Feeding swill & getting replacement stock from other farms
- High incidence rate (14.1/100pig farm years)
- No evidence of long-term domestic pig carriers.


Objective 2: Investigate the risk factors for ASF along the domestic pig value chain.

- Study area; Soroti, Tororo, Kabarole, Mityana, Mukono
- Study population; Pig farmers and pig traders (middlemen, butchers, roast pork restaurants)

Findings;

- Existence of potential risk factors
- Poor infrastructure and ASF control/prevention mechanisms at district level.

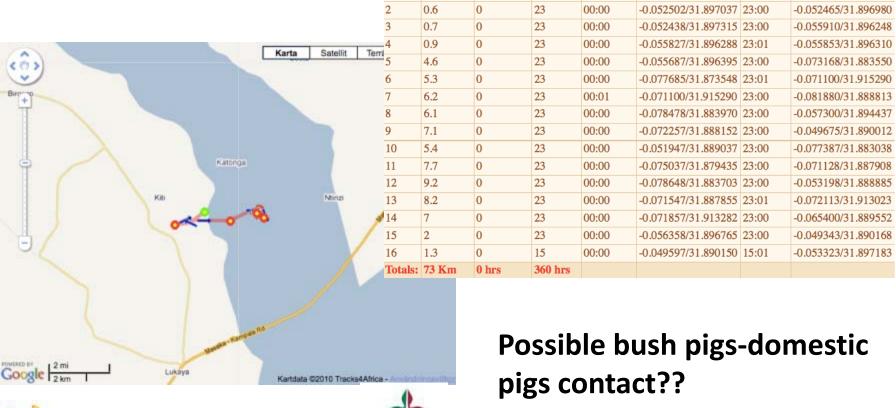
EMBASSY OF SWEDEN Kampala

Objective 3: Assess the role of wildlife (wild pigs and soft-ticks) in transmission of ASF.

- Bush pigs work
- ELISA for antibodies against soft tick
 Ornithodoros moubata in sera of domestic and wild pig.

Unit sends GPS positions through GSM every 3 hours, and movements can be monitored online

0


23

00:00

-0.052482/31.897233 23:00

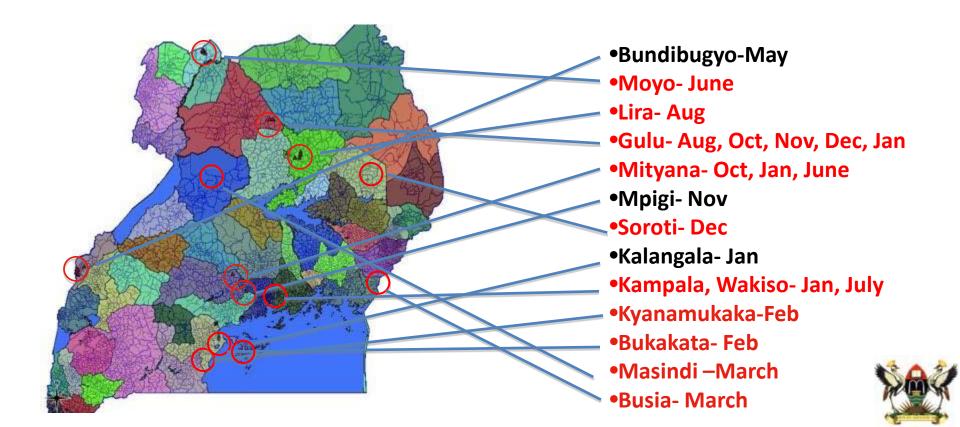
0.7

1

to Burnel Science

-0.052047/31.896915

Tick antibodies analysis


- Employs recombinant protein TSGP1, a salivary gland protein (Diaz-Martin et al, 2011).
- Results on inactivated sera at IRNASA, Spain (92 out of 500 samples or 18.4% from pig farms, slaughter slabs, outbreak samples, and wild pigs).
- High exposure to the soft tick vector.

Objective 4: Assessment of genetic variability of ASF virus isolated from different hosts and places.

17 s		haplotypes: (17/398; 8/32)
	111222222233333	74 segregating sites in the 33 haplotypes: (74/398)
	81232666777901111	1 111111112 222222222 22222222 223333333
	16302367014026789	
1	AG5 CATTACCGACCGAGA	11235 5678888890 0122336990 0111222233 5556667778 8900111123 1347909045 8730126810 3637090362 8024236958 3693670141 7028678902
2	2 AKL1_1	
3	BOB3_2C	1 BOB3_2 GCTCACGGTT ACTACCATTC AATCTCACCC CATGCCCCGC CTT-ACCGAC CCCCGAGAAC
	Gul1.1CT-AGAG	2 AKL1_1
	Gul1.3CTNNNNN	
	6 Gul4.4CG-A.T	4 Moy18
		6 KIR10
	7 Moy18C	7 Gull.1
	3 KLZ10AGT	8 KLZ10
		9 Gul4.4 NNNNNNNN
		10 X_AY35 IC AI.I GCII
		11 KEN05
		12 X_AY35 AT GCTT T.TG.
		13 XIV_AYTAA.C .TA.G.GATG TT.TG TT
1.	Fewer differences	14 XIII_ATAA.C .TA.GATG
		15 XV_AY4TAACC .TATGATGTTT TCGT.TT
	among UgASF across	16 XVI_AYTA.C .TA.GATGTTCGTT
	time and space	17 VIII_ATAA.C .TA.GATGTTTCGTT
	•	18 VIII_ATAA.C .TA.GATGTTTCGTT
		19 XII_AY CTAA.C GTA.GATG
2.	More differences btn	20 XI_AY3TAA.C .TA.GATG
	Ug and the rest	21 XII_AYTAA.C GTA.GATG
	Og allu the lest	22 VII_AFTA.C .TG.G.GATGGT.TTGT .TT
		23 XVIIITA.C .TG.G.GATGGT.T .CGTT
		24 V_AF30TA.C .TG.GCGTAT.TGT.TC.GT.TT
		25 VI_AF2TA.C .TG.GCGTAT.TGTC.GT.TT
		26 XVII_DTA.C .TG.G ATGGT.TGTT
		27 I_AF50T.T.A.C .TG.G.G.GATGGAT.TGTT
44	A	28 II_AF2CTA.C .TG.G.GATGT.TGTT
5		29 XXI_DQ .T.TA.C .TGGATGTGT.TT
m		30 IV_AF4TA.C .TGG. GATGTGTTTT
1		31 III_DQTA.C .TG.G.G. GATGTGTT

Acknowledgements

Supervisors;

Makerere; Prof. OCAIDO Michael (Ph.D)

Dr. MASEMBE Charles (Ph.D)

SLU/SVA; Dr. STAHL Karl (Ph.D)

Prof. BERG Mikael (Ph.D)

