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ABSTRACT 
 
Air traffic delay is not only a source of inconvenience to the aviation passenger, but also a major 
deterrent to the optimisation of airport utility. Many developing countries do less to abate this 
otherwise seemingly invisible constraint to development. The overall objective of this study was 
to investigate the dynamics of air traffic delays and to develop stochastic optimisation models 
that mitigate delays and facilitate efficient air traffic flow management.  
 
Aviation and meteorological data sources at Entebbe International Airport for the period 2004 to 
2008 on daily basis were used for exploratory data analysis, modelling and simulation purposes. 
Exploratory data analysis involved logistic modeling for which post-logistic model analysis 
estimated the average probability of departure delay to be 49 percent while that for arrival delay 
was 36 percent. These computations were based on a delay threshold level at 60 percent which 
presented more significant predicators of nine and ten for departure and arrival respectively. The 
proportion of aircrafts that delay was established to follow an autoregressive integrated moving 
average, ARIMA (1,1,1) time series.  
 
The stochastic frontier model estimates show the average inefficiencies of aircraft operations as 
15 and 20 percent at departure and arrival respectively. The final category of output of the study 
was three stochastic optimisation models developed by relating airport utility and the interaction 
effects of daily probabilities of delay and airport inefficiency estimates. The three models 
measure daily airport utility at aircraft departures, arrivals and aggregated aircraft departures and 
arrivals. In this formulation, the stochastic frontier model inefficiency estimates and the post-
logistic delay probability estimates were used as inputs into the stochastic optimisation models to 
enforce the models’ theoretical underpinning.  
 
Model sensitivity analysis adduced that the utility level for a given time period at an airport with 
higher levels of inefficiency was significantly less than the utility level with lower levels of 
inefficiency. Furthermore, lower estimates of probabilities for departure and arrival delay 
resulted into a higher operational utility level of the airport. Further analysis suggests that 
Entebbe International Airport operates at almost the same utility levels for aircraft departures, 92 
percent and aircraft arrivals, 91 percent. To maximise airport utility over a time period, measures 
have to be developed to improve overall timeliness of aircraft operations at departures and 
arrivals respectively.  
 
 
Keywords: Arrival delay, departure delay, proportions, stochastic optimisation models 
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CHAPTER ONE 
INTRODUCTION 

 

This chapter presents a discussion of the background to the study from which the motivation and 

problem statement are derived.  Consequently, the objectives of the study are stated including its 

scope.  

 

1.1 Background to the Study 
 
Air traffic has greatly increased over the last decade and is predicted to continue to increase at a 

rate of 15 to 20 percent over the next decade Civil Aviation Authority (2007) . This great 

increase in air traffic relates to an increase in the demand for airport and airspace resources. 

Unfortunately, airspace and airport capacities in Africa region as a whole and Uganda in 

particular are not increasing at a rate adequate to meet its rising demand. The continued level of 

inefficiency in the air transport sector especially in Uganda has created the need for more robust 

solutions in averting the situation through developing appropriate approaches to abate the 

situation in order to promote a sustainable global partnership, MFPED & UNDP (2003), (2007); 

UN Devinfo Team (2009) . 

 

It is vital that new methodologies and tools be developed to address the inevitable likely effects 

associated with general high traffic rates as recommended for road traffic flow management 

Kakooza et al. (2005) . Given this tendency in air traffic flow and the ever growing demand for 

aviation services in the country, there is need to develop tools that optimise the available 

resources so as to edge towards effective air traffic flow management. 
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Figure 1.1 is the map of Uganda showing the location of airstrips and the Entebbe International 

Airport. Uganda is a landlocked country, bordered by Sudan to the North, Democratic Republic 

of Congo to the west, Rwanda and Tanzania to the south, Kenya in the East. The EIA is located 

at Entebbe on the shores of Lake Victoria 32 km from Kampala, the capital city.  The Civil 

Aviation Authority (CAA), in partnership with Government is mandated to manage Entebbe 

International Airport including the thirteen airfields in the country. With the East African 

Confederation, more air traffic flow is expected which at this rate will cause a surge in air traffic 

at Entebbe International Airport.   

 

 

Figure 1.1 Map of Uganda showing the distribution of airports1 
 

  
                                                        
1 Map of Uganda, Courtesy of Google Imagery as at the 25th October, 2009 
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Figure 1.2 shows an aerial view of the exact location of Entebbe International Airport. There are 

two runways namely; runway 12/30 (2,408 metres) and runway 17/35 (3,658m). However, only 

runway 17/35 is operational because it has the Instrument Landing System (ILS). The ILS refers 

to a ground-based instrument approach system that provides precision guidance to an aircraft 

approaching and landing on a runway, using a combination of radio signals and, in many cases, 

high-intensity lighting arrays to enable a safe landing during instrument meteorological 

conditions (IMC), such as low ceilings or reduced visibility due to fog or rain. 

 

Figure 1.2 Aerial view of the location of Entebbe International Airport2 
 

                                                        
2 Location of Entebbe International Airport, courtesy of Google Imagery as at the 25th October, 

2009 
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As of the year 2007, sixteen international airlines had scheduled operations to and from Entebbe 

International Airport, serving fourteen different destinations. The airlines also offer connection 

to the rest of the world. Uganda's geographical location in the heart of Africa, has given Entebbe 

International Airport greater advantage for hub and spoke operations in the Eastern and Southern 

African region according to the website of civil aviation authority of Uganda website Air 

Operations (2007)  accessed on the 25th October, 2007.  

 
During instances of capacity-demand imbalances, air traffic management (ATM) in achieving 

efficiency and safety is of prime importance as noted by Brooker (2005) . Any given airspace is 

composed of flight paths, control facilities, sectors and airports. The overall goal of traffic flow 

management, TFM, is to strategically plan and manage entire flows of air traffic, provide the 

greatest and most equitable access to airspace resources, mitigate congestion effects from severe 

weather and ensure the overall efficiency of the system without compromising safety. In the 

United States' National Airspace System (NAS), for example, there are 21,000 daily commercial 

flights that are monitored and controlled by 21 Air Route Traffic Control Centers (ARTCCs), 

462 airport towers and 197 Terminal Radar Approach Control Facilities (TRACONs). The entire 

United States airspace is monitored by a central Federal Administration Agency (FAA) facility 

known as the Air Traffic Control System Command Center (ATCSCC) located in Herndon, 

Virginia. Therefore, a fundamental capability of all TFM centers globally is the ability to 

monitor airspace for potential capacity-demand imbalances. 

 

The airspace capacity demand imbalance although constantly monitored by the Air Traffic 

Control System, at certain times requires human intervention. However, in order to facilitate the 

human input, sufficient and timely statistical information has to be availed. 
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The traffic flow management problem (TFMP) can be defined as managing traffic flow during 

capacity-demand imbalances. As observed by Hansen (2004), the TFMP has become 

increasingly more important and difficult as the amount of air traffic has increased. Thus, the 

seriousness of this problem has resulted into a steady increase in delays. Ground holding 

procedures are a principal tool used to address TFMP. The two main ground holding procedures 

employed are ground stops and ground delay programs (GDPs). A ground stop is an extreme 

initiative taken when arrival capacity drastically drops suddenly or when it is greatly 

underestimated. In a ground stop, flights are held on the ground at their airports until it is 

determined that the capacity-demand imbalance has abated. 

 

Collaborative Decision Making (CDM), now known as Collaborative Traffic Flow Management 

(CTFM), was motivated by a need for increased information sharing and distributed decision-

making Hoffman R et al. (1999) . They further noted a desirable shift from a central planning 

paradigm to a collaborative TFM paradigm in which airlines, through their airline operational 

control centers (AOCs), would have more control, flexibility and input into the air traffic flow 

management decision-making processes. The philosophy of CDM is that with increased data 

exchange and collaboration comes better and more effective decisions on the part of the traffic 

flow managers. Collaborative decision making goes hand-in-hand with the air traffic control, 

ATC concept of Free Flight Architecture (FFA) in which more responsibility for flight 

maneuvering and aircraft separation is given to the aircraft and pilot.  
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Air traffic delays are broadly categorized as terminal or en route delays. Terminal delays are 

incurred as a result of conditions at the departure or arrival airport, and are charged to the 

appropriate airport. En route delays occur when an aircraft incurs airborne delays of 15 minutes 

or more as a result of an initiative imposed by a facility to manage traffic. The delays are 

recorded by the facility where the delay occurred and charged to the facility that imposed the 

restriction. 

 

1.2 Motivation for the Study 
 
No research has so far been done about air traffic delay at Entebbe International Airport and 

none has so far published about the same subject at airports in the Southern and Eastern Africa 

region. It was therefore necessary to assess the extent of air traffic delays at EIA. In the process, 

it was established that more information would result from an in-depth assessment of delay 

separately for departure and arrival delay dynamics.   

 

In order to improve the management of air traffic flow at Entebbe International Airport, it was 

important to analyse the performance of aircraft delay over a period of time. Billy (2009) argued 

that air traffic delay are not only a source of inconvenience, but also cost New York City $2.6 

billion a year. Ehrlich (2008) estimated the total cost due to domestic air traffic delays in the 

United States of America to be $41 billion for the year 2007 that included higher airline 

operating costs, lost passenger productivity and time and losses to other industries. Evans et al. 

(2008) agreed that to improve air traffic management during severe convective weather, model 

need to be applied to facilitate timely decision-making in difficult environments. 
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The study was guided by five general impacting conditions to air traffic flow management 

Bauerle N. et al. (2007) namely:  

i. Weather: the presence of adverse weather conditions affecting operations. This includes 

wind, rain, snow/ice, low cloud ceilings, low visibility, and tornado/ 

hurricane/thunderstorm.  

ii. Equipment: an equipment failure or outage causing reduced capacity. Equipment failures 

are identified as to whether they are FAA or non-FAA equipment, and whether the 

outage was scheduled or unscheduled.  

iii. Runway/Taxiway: reductions in facility capacity due to runway or taxiway closure or 

configuration changes.  

iv. Traffic Management Initiatives (TMI): national or local traffic management imposed 

initiatives, including ground stops/delays, departure/en route spacing, fuel advisory, 

mile/minutes in trail, arrival programs, and airport volume. 

v. Other: emergency conditions or other special non-recurring activities such as an air show, 

VIP movement or radio interference. International delays are also included in this 

category.  
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1.3 Problem Statement 
 
Optimization of air traffic flow at airports is one of the fundamental ways through which airlines 

maintain operational and economic efficiency. However, weather, equipment, runway and other 

anomalous conditions disrupt air traffic flow leading to significant costs as a result of aircraft 

delays. The occurrence of these conditions creates unpredictable situations that require stochastic 

approach to solve. Automated systems for optimizing air traffic flows are unable to effectively 

reconfigure when path planning must account for dynamic conditions such as moving weather 

systems and unpredictable movements of very important persons.  

 

Human intervention is needed and could be provided to enhance the automated decision making 

for aircraft route planning and reconfiguration. Specifically, there is lack of such intervention at 

Entebbe International Airport that can mitigate delays so as to enhance Air traffic flow 

Management to boost efficiency of aircraft operations. Statistics are the basic ingredients of 

human interventions and these are derived mainly from operational data and data simulations 

where necessary to facilitate modeling for problem solving. Although, some operational data are 

available at the Entebbe International Airport, they are not maximally being utilized to abate air 

traffic delays for sustained efficient air traffic flow management. Subsequently, there are not 

enough tools to inform the human intervention into air traffic management automation process in 

order to lead to sustainable air traffic efficiency. 
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1.4 Research Objectives  
 
The main objective of this research study was to investigate the dynamics of aircraft delays and 

hence develop stochastic optimisation models that mitigate delays and facilitate timeliness of 

aircrafts for efficient air traffic management.  

 
The specific objectives of the study were the following: 

1.  To analyse the air traffic delay at Entebbe International Airport;  

2.  To assess the dynamics of air traffic delay; 

3.  To determine air traffic operational inefficiency; 

4.  To develop stochastic models for aircraft operational utility optimisation;  

5.  To develop algorithms for sensitivity analysis so as validate the model 

 

 

1.5 Research Questions  
 
The study addresses the following research questions: 

i) Is there a trend in the proportion of aircraft delays at Entebbe International Airport? 

ii) How significant do the factors associated with aircraft delays actually determine air 

traffic delays at Entebbe International Airport? 

iii) Can we determine air traffic operational efficiency using the available data? 

iv) How is aircraft operational utility related to departure and arrival delays? 

 

  



10 
 

1.6 Significance of the Study 
 

The study produced outputs that are very important to the aviation industry including. Firstly, the 

study derived departure delay determinants of aircrafts at Entebbe International Airport and those 

with similar characteristics especially in Eastern and Southern Africa region. Similar 

determinants were derived for evaluating the dynamics of aircraft arrival at the airport. Secondly, 

a model for aircraft operational technical inefficiency at the airport was determined using 

stochastic frontier model approach. The significance of these two major study outputs, one and 

two is to empower the decision making process of air traffic flow management by filling the 

knowledge gap and emphasizing the need for integration in the decision making process of air 

traffic flow management. The knowledge gap is informed through evaluating the determinants of 

aircraft delays and the ability to forecast the delay based on aggregated daily historical data.  

 

Thirdly, the stochastic optimisation models developed recognise the negative effects of delays in 

the daily operations of aircraft flow and also based on the knowledge, established an optimal 

aircraft operational level over time. In these models, the number of aircrafts that delay per day 

are minimised, without necessarily compromising the lives of passengers, the crew board and 

machinery losses. 

 

Fourthly, computer algorithms have been developed for the stochastic models that render them 

easy to adapt for implementation through computer programming and automation. Sensitivity 

tests performed show that the models are adaptable to different scenarios both in the known very 

busy and moderately busy airports in the world. Furthermore, because of the aggregation of the 

number of aircrafts delaying to depart or arrive per day, these model are geared towards 
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performing better than the previous models even for the worst case scenario where the inputs are 

practically too large. The previous models have always considered the duration of time delayed, 

however, the proportions of aircrafts that delay either to depart or to arrive was the primary 

parameter used in this study. 

 

1.7 Research Contribution 
 

Stochastic optimization models are presented for the single airport delay programme (SADP) at 

EIA in which airport utility is computed based on ground and arrival delays assigned to various 

flights respectively. In the models, constraints that can capture any generalized scenario 

representing evolving information about airport operating conditions typical to an airport are 

specified. For all instances of the problem, numerical solutions are obtained directly from the 

relaxation of the models; hence the computational times are in order of a few seconds even for 

large scale problems. An additional advantage of this formulation is that it handles a wide range 

of objective functions ranging from the basic to more complex problems. In addition to the 

standard linear delay cost function with different weights for airborne and ground delay, an 

estimation of airport daily utilities and a maximum of the utilities for all the sampled days during 

departure and arrival at a given airport is computed.  

 

This study also applied a data-driven approach to modeling whereby statistical models based on 

ground and airborne delay programs are developed to aid management in making appropriate 

and timely decisions as presented in Chapter Three. 
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Based on simulation of different airport performance, different scenarios and their probabilities 

of occurrence were generated.  An optimal scenario-based probability of the optimal utility was 

then generated. Data simulations through well planned design of experiments on the model are 

also presented in Chapter Four of this thesis.  

 

Finally, this study extended its scope to develop algorithms based on the new object oriented 

paradigm that enable the air traffic management by using the current object-oriented software 

technology that provides for human intervention into the system of traffic management at an 

airport. 

 

1.8 Delimitations of the Study 
 
The empirical study does not focus on the Civil Aviation Authority in its entirety, but only on 

one Department under the Directorate of Air Navigation Services that specifically handles air 

traffic management. It does not analyze the technical details for example, the construction and 

materials of the runways, but rather focuses on the process of managing and improving air traffic 

flow efficiency at the airport. It analyses the dynamics of the aircraft delay at zero tolerance 

performance of Entebbe International Airport. The study does not analyze aircraft delay based on 

the length of duration of the delay as a unit of measurement; rather the daily proportion of 

aircraft delay was used in the analysis.   
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1.9 Limitations of the Study 
 
The research had a number of limitations that either acted to slow down its progress or deviate 

the methodology to the research approach. Nevertheless, the research proceeded to the 

fulfillment of the researcher’s expectations. Some of the research limitations included; firstly, 

security limitations to access the case study area, Entebbe International Airport; secondly, the 

high level of data confidentiality attached to the data at the case study; thirdly the unexpected 

data incompleteness for the proposed time duration and lastly the uncertainty of data 

compatibility since dual sources of data were used for this study. However, it is worth to note 

that in no significant way did these limitations affect the research output because each of those 

limitations mentioned was appropriately overcome.  

 

The first limitation was overcome by getting a security pass to enable me access necessary 

offices at the airport. This research did not require use of identity names for airlines and aircrafts; 

hence dropping those variables did not affect the output of this research in anyway.  Although, 

the study aimed at using all the available delay data at the airport, the daily hourly data collected 

from both the airport and the meteorological briefing office for five years resulted into 1827 

daily aggregated records that formed a sufficiently large data set for this research to meet its 

specific objectives. Finally, the experience of the researcher in data management played a big 

role in aptly managing and handling data from different data sources, hence this limitation was 

overcome hustle free.  
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1.10 Ethical Considerations  
 
The nature of this research required that operational data of Entebbe International Airport were 

used. As such issues pertaining data confidentiality and integrity were treated with high ethical 

regard. All variables that tended to identify and classify individuals, airlines or aircrafts involved 

were dropped. Aircraft registrations and countries where they are registered from were also 

dropped for the purpose of maintaining high ethics and confidentiality.  

 
1.11 Structure of the Thesis 
 
The thesis has six chapters. Chapter 1 is an introduction to the research outlining the research 

problem and the objectives of the research. Chapter 2 is literature review and a theoretical and 

conceptual framework in order to understand the research context and to identify relevant 

theories and concepts. Chapter 3 is devoted to the statistical models for air traffic delay, detailed 

exploratory data management approach, data parameters from two sources, statistical analyses, 

the R statistical computing language and other customized code for statistical model 

development and sensitivity analysis. Models presented under different sections include: 

sequence charts, ARIMA models and Logistic models for aircraft delays and the stochastic 

frontier model for aggregated aircraft delay. Chapter 4 presents the stochastic optimization 

models deriving from this study. The stochastic optimisation model for maximizing aircraft 

utility is presented. Sensitivity analysis based on the available data at the Civil Aviation 

Authority at EIA and data simulations are used to ascertain the resilience of the model. Chapter 5 

provides discussions based on the results from the study. Chapter 6 comprises of the conclusions 

and recommendations as generated from the preceding chapters.  
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CHAPTER TWO 

LITERATURE REVIEW 
 

Review of relevant literature was considered in this Chapter to assess the extent to which 

solution finding research, using the modeling approach, has reached as far as air traffic 

management. Consequently, existing knowledge gaps were discovered, thus confirming the 

relevance of this research as its findings will go a long way in filling the existing knowledge gap 

in air traffic management in Uganda and the world at large. The choice of sections in this chapter 

is two pronged, that is, informative and exploratory. 

 

2.1 Airport Capacity 
 
Airport capacity, the primary determinant for resource allocation at a given airport, is the number 

of aircrafts that can be accommodated given the resources available at the airport. The capacity 

of a runway or a set of simultaneous active runways at an airport is defined as the expected 

number of movements (landings and take offs) that can be performed per unit time in the 

presence of continuous demand and without violating air traffic control (ATC) separation 

requirements. This is often referred to as the maximum throughput capacity. This definition takes 

into account the actual number of movements that can be performed per unit of time and is a 

random variable.  

 

Airports consist of several subsystems, such as runways, taxiways, apron stands, passenger and 

cargo terminals, and ground access complexes, each with its own capacity limitations Ball 

Michael et al. (2006) . At major airports, the capacity of the system for runways is the most 

restricting element in the great majority of circumstances. This is particularly true from a long-
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run perspective. While it is usually possible – albeit occasionally very expensive – to increase the 

capacity of the other airport elements through an array of capital investments, new runways and 

associated taxiways involve big expenses in land and they may also have environmental and 

other impacts that necessitate long and complicated approval processes, often taking a couple of 

decades or even longer, with uncertain outcomes. The capacity of runway systems is also one of 

the major causes of the most extreme instances of delays that lead to widespread schedule 

disruptions, flight cancellations and missed flight connections. There have certainly been 

instances when taxiway system congestion or unavailability of gates and aircraft parking spaces 

have become constraints at airports, but these are more predictable and stable. The associated 

constraints can typically be taken into consideration in an adhoc way during long range planning 

or in the daily development of ATFM plans. The capacity of the runway system can vary greatly 

from day to day and the changes are difficult to predict even a few hours in advance. This may 

lead to an unstable operating environment for air carriers on days when an airport operates at its 

nominal, good weather capacity. Flights will typically operate on time, with the exception of 

possible delays due to ‘upstream’ events, but with the same demand at the same airport, schedule 

reliability may easily fall on days when weather conditions are less than ideal. 

 

2.2 Air Traffic Management, Global Perspective 
 

The arrivals, departures and general day-today flow of aircrafts in a given airport is facilitated 

and controlled by a number of parameters that include airport capacity and weather parameter 

dynamics Zhengping et al. (2004). Therefore, for an efficient, smooth and optimal operations, 

there is need to strengthen air traffic management tools for accurate air traffic flow management 

decisions. 
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2.3 Air Traffic Management on the African Continent 
 

Africa is one of the continents that are dominated largely by developing economies. These 

economies are characterized by underdevelopment in all major sectors including health, 

agriculture, communication, environment and transport. In September 2000 the 8th UN General 

Assembly adopted the Millennium Declaration which was signed by 189 countries including 147 

Heads of State to facilitate the betterment of the livelihood of inhabitants in the developing 

countries. However, MDG eight that is central in strengthening the partnership between the 

developed and developing economies has not been given sufficient attention by governments in 

the developing economies.  Since over 50 percent of budgets of most African countries are 

financed by the developed nations, achievement of goal eight is not only a necessary, but to a 

greater extent a sufficient condition to their economic development.   

 

2.4 Air Traffic in Uganda 
 

Air traffic in Uganda is dominated by international passengers mainly due to the fact that 

although most convenient, it is the most expensive means of transport as such there are 

comparatively fewer locally derived domestic passengers. A majority of the country’s population 

of about 80 percent is involved in subsistence agriculture whose financial gains are so meagre 

that they cannot afford sustain air traffic costs. However, the conclusion of the bilateral air 

service agreements with thirty three countries is indicator for continued increased aviation 

activities at Entebbe International Airport.  
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Air traffic management in Uganda is under the umbrella of the Department of Air Navigation 

Services under the Directorate of Air Navigation Services of the Civil Aviation Authority (CAA) 

Uganda. CAA is an arm of the International Civil Aviation Organisation (ICAO) in Uganda.3 

The cardinal objective of CAA is to promote the safe, regular, secure and efficient use and 

development of civil aviation inside and outside Uganda. 

 

2.5 Domestic Air Traffic in Uganda 
 
The number of airfields has been increasing in order to boost domestic air traffic. There are 

currently thirteen airfields Civil Aviation Authority (2007) , indicates that domestic air traffic 

increased drastically between the years 1996 and 2008 (see Figure 2.1). This increase in 

domestic air traffic in the country is mainly attributed majorly to the increased number of 

international tourists. Presently, the Civil Aviation Authority, CAA manages thirteen airfields 

located in the following districts: Arua, Gulu, Kasese, Kidepo, Soroti, Mbarara, Pakuba, 

Masindi, Jinja, Lira, Moroto, Tororo and Kisoro. These upcountry airfields form part of 

Uganda's domestic air links and serve mainly small general aviation aircraft. In order to promote 

East African region as one tourist destination, five upcountry airfields that include; Arua, Kasese, 

Gulu, Kidepo, and Pakuba were designated as entry and exit points to specifically handle cross 

boarder air traffic flow within the region.  

                                                        
3 http://www.caa.co.ug/index1.php?pageid=64&pageSection=CAA%20Statute Accessed 25th 

October, 2008 
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Figure 2.1 Trend of Domestic Passengers at Entebbe International Airport 
 (Data Source: Uganda Civil Aviation Authority Air Traffic Statistics) 

 

According to the Civil Aviation Authority (2007), an arm of the International Civil Aviation 

Organisation, a section of the United Nations Organisation responsible for monitoring and 

management of air traffic, the findings  show that the number of domestic passengers in Uganda 

has almost doubled since the year 1996. This increase is due to the ever increasing number of 

foreign tourists and the expansion of the number of aerodromes across the country. A forecast of 

the number of domestic passengers for the year 2010 showed that the country will have to 

prepare to accommodate over 50,000 domestic civil aviation passengers. 
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2.6 International Air Traffic in Uganda 
 

Entebbe International Airport is the only international airport in the country and acts as a hub in 

the Eastern and Central Africa region.  In the year 2007, Uganda held the Commonwealth Heads 

of Government Meeting (CHOGM) that overwhelmed the only international airport’s operations 

with a large number of international passengers. The airport, however, benefitted from some 

renovations including physical facilitation on improvement of air traffic flow were made. 

 

 
Figure 2.2 Trend of International Passengers at Entebbe International Airport 
 (Data Source: Uganda Civil Aviation Authority Air Traffic Statistics) 

 

The number of International passengers has also almost doubled since the year 1996. This is due 

to the increasing number of tourists and the relative improvement in facilities at EIA besides 

workshops and international conferences.  
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2.7 Air Traffic Management in Uganda 
 

The rapid restructuring of the global transport system taking place is likely to have a profound 

impact on processes of globalization, not only in the industrialized, but also industrializing 

world, including Africa, (Pedersen, 2001) . Pedersen also investigate some of the changes taking 

place in the global transport system and discussed their impact on African development. 

 

From an individual, national and global point of view, international tourism and air travel are 

critical factors in achieving global sustainability (Susanne, 2001). This, therefore, clearly 

indicates that for developing countries to have a sustainable development, they have to improve 

their air traffic flow management in order to attract and sustain a constant flow of tourists in their 

countries. 

 

It is interesting that in the event of ICT, air traffic controllers still record data for each flight on 

strips of paper and personally coordinate their paths. This becomes a great challenge because 

streamlining this process manually on strips of paper without the assistance of necessary 

software is not efficient. However, it is noted that in many airports around the world and in 

Africa, unlike Entebbe International airport by the year 2007, flight progress strips had not yet 

been replaced by electronic data presented on computer screens. 

 

Besides the global endeavors, air traffic management in Uganda has not received the attention it 

deserves to improve its operations for efficient traffic flow management. Therefore, this forms 

the premises for this research. 
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2.8 Effect of Weather Parameters on Air Traffic Management  
 

Like in the US and other developed countries, air traffic delays are affected by weather 

parameters such as visibility, cloud cover and thunderstorm-related impacts as confirmed 

(Wesonga et al., 2008) . Moreover, convective weather delays continue to increase, even though 

a number of new weather information systems and traffic flow management (TFM) decision 

support tools have been deployed. In area control centers, the major weather problem is 

thunderstorms which present a variety of hazards to aircrafts. An aircraft will deviate around 

storms, reducing the capacity of en-route system by requiring more space per aircraft, or causing 

congestion as many aircraft try to move through a single hole in a line of thunderstorms. 

Occasionally, weather considerations cause delays to aircrafts prior to their departure as routes 

are closed by thunderstorms.  

 

Evans et al. (2008) state three major reasons why thunderstorms present a very difficult air 

traffic management (ATM) problem: 

 En route capacities are significantly reduced by phenomena that are difficult to predict in 

advance.  

 Developing and executing convective weather impact mitigation plans is difficult when 

actions taken in response to the weather disruptions in one spatial region may cause 

significant air traffic management problems in another spatial region. The task is further 

complicated by the fact that plans must be developed and executed quickly to take 

advantage of short lived opportunities.  

 There may be subtle differences between any two weather events that pose particular 

decision-making challenges and there are no agreed-upon approaches for traffic 
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management of convective weather impacts. As a result, personal decision-making styles 

on the part of individual decision makers, along with the person's background and 

experience, are important determinants of the overall use of the traffic and weather 

information to achieve goals appropriate for a given air traffic control (ATC) facility. 

 Furthermore, in tactical (less than 2 hour) decision making, there is no one decision 

maker who can order the others to comply.  

 

Weather is a also a major factor in traffic capacity dynamics causing runway capacity issues 

(Markovic et al., 2008) . Rain or ice and snow on the runway cause landing aircraft to take 

longer to slow and exit, thus reducing the safe arrival rate and requires more space between 

landing aircraft. Fog also causes a decrease in the landing rate. These in turn, increase airborne 

delay for holding aircraft. If more aircraft are scheduled than can be safely and efficiently held in 

the air, a ground delay program may be established, delaying aircraft on the ground before 

departure due to conditions at the arrival airport. 

 

Statistical models to determine the weather impacts on punctuality of aircrafts have also been 

developed (Markovic et al., 2008) . They applied a hybrid regression/time series modeling to 

relate the total daily punctuality at Frankfurt Airport, Germany, to weather, the traffic flow and 

the airport system state. The selected modeling approach was then applied to the annual, the 

multi-annual and seasonal data. Their findings showed that the portion of the variability that 

could be explained by the model after correction of autocorrelations in the residuals using 

autoregressive (AR) models was between 60 and 69 percent. In this study autoregressive 

integrated moving average (ARIMA) models presented in Chapter Four. 
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2.9 Ground Delay Program as an Approach to Air Traffic Management 
 

The ground delay program (GDP) is an air traffic flow management mechanism used to decrease 

the rate of incoming flights into an airport when it is projected that arrival demand will exceed 

capacity. Under GDP, a set of flights destined for a single airport is assigned ground delays, 

(Adilson & Arnaldo, 2000) .  

 

GDPs essentially place CAA service users into a state of irregular operations. Airlines respond 

by rescheduling, cancelling, or substituting flights. The cancellation and substitution processes 

allow scheduled airlines to mitigate the adverse effects of ground delays. Cancellation and 

substitution are specific GDP processes. The process of delaying flights while preserving their 

order is known as Grover Jack. Furthermore, a bartering solution was suggested whereby inter-

airline slot exchanges may be viewed as a bartering process, in which each round of bartering 

requires the solution of an optimization problem, (Thomas & Ball, 2005) . 

 

The effectiveness of a GDP is contingent upon accurate demand profile and true representation 

of airport's available capacity during inclement weather conditions. Collaborative decision 

making (CDM) procedures are said to contribute greatly to an increase in the accuracy of 

aggregate demand at airports. But these have done little to determine the actual available 

capacity at congested airports.  An airport's capacity or airport acceptance rate (AAR) is directly 

related to good weather conditions through an airport's runway configuration and its landing 

procedures. Weather conditions at an airport are used to determine which runway configurations 

to institute and which landing procedures to implement (Tasha, 2001) . There are two major 

types of landing procedures: Instrument Flight Rules (IFR) and Visual Flight Rules (VFR). IFR 
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are required when a cloud ceiling of less than 1000 (one thousand) feet or a visibility of less than 

three miles exists. VFR refers to weather conditions that have a ceiling that exceeds 1000 (one 

thousand) feet and a visibility that exceeds three miles. 

 

The effective assignment of delay to flights during a GDP is a crucial element to the 

effectiveness and fairness of a GDP. Fairness of a GDP refers to equitable allocation of delay to 

each airline. There is a constant hedging between conservative policies of assigning more ground 

delay. This could lead to the underutilization of arrival resources and the liberal policies of 

assigning less ground delay that could lead to more costly airborne holding delays (Ball et al., 

2006) . Thus, the ground delay problem (GDP) seeks to determine an optimal balance between 

these policies for assigning delay in a GDP.  

 

The first discussion and description of GDP, referring to the deterministic GDP as the flow 

management problem in which travel times and capacities are deterministic, the existence of a 

discrete time horizon whereby the only capacitated element is the arrival airport (Odoni, 1987) . 

He further established that there are three main assumptions required by the ground holding 

model, which are based on the assumptions of the flow management problem. The assumptions 

are (1) a discrete time horizon, (2) deterministic demand and (3) deterministic capacity.  

 

A dynamic programming algorithm for the single-airport static stochastic ground holding 

problem, GHP for at most one time period was developed (Andreatta & Romanin, 1987) . This 

was the first paper written that developed an algorithmic approach to determining the amount of 

ground delay to assign to flights bound for a congested airport. The authors considered a single 
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destination airport and flights bound for the airport. The dynamic program resulted in an optimal 

delay strategy that minimized total expected delay for the flights. The model in their paper is a 

static, stochastic version of the GDP because it is assumed that airport capacity information is 

known at the beginning of the day and is summarized using a random variable. 

 

Airport capacity can be summarized by a random variable k that takes on 0,1,...,n with 

probability p(0), p(1), ..., p(n), (Terrab & Odoni, 1993) developed a more efficient algorithm to 

solve the single-airport static deterministic GHP optimally and heuristics for the single-airport 

stochastic GHP. While Richetta & Odoni (1993)  developed heuristics for the single-airport 

dynamic stochastic GHP.  

 

Terrab et al. (1993) formulated single-airport static stochastic GDP with multi-periods as a 

dynamic programming problem. They proposed heuristics to solve their version of the GHP and 

to handle large problem instances that occurred in practice. Since the authors were unable to 

prove that the formulation would yield an integer solution directly from the linear programming 

(LP) relaxation, they developed a decomposition method to exploit the fact that the constraint 

matrix could be partitioned into network matrices. Since this was a static stochastic version of 

the GHP, the authors described airport capacity in the following manner: Capacities are random 

variables that are given a probabilistic forecast that can be thought of as a number of scenarios, 

each scenario representing a particular instance of the random capacity vector with an associated 

probability.  
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Stochastic linear programming with one stage to solve the single-airport static stochastic GHP 

with multi-periods optimally were first used (Richetta & Odoni, 1994), who expanded previous 

work by including the dynamic case. They were able to overcome the limitations of the dynamic 

programming formulation in their paper (Terrab et al., 1993). Previous work determined amount 

of delay to assign on a flight-by-flight basis.  

 

The single-airport static stochastic GDP as an integer programming problem that can be solved 

in polynomial time was formulated (Hoffman et al., 1999) . They improved on (Richetta et al., 

1994) formulation by including fewer decision variables and exploiting the network structure of 

the problem to an optimal solution using linear programming relaxation. As in other stochastic 

versions of the GDP, arrival capacities are assumed to be random variables. The most important 

contribution of their model is the paradigm and procedures of CDM. The trend is towards a 

formulation of the GDP that is stochastic in nature because it is a better representation of true 

conditions during a GDP.  

 

2.10 Air Delay Program as an Approach to Air Traffic Management 
 

Air traffic flow management in Europe has to deal as much with capacity constraints in en route 

airspace as with the more usual capacity constraints at airports (Guglielmo & Amedeo, 2007). 

The en-route sector capacity constraints, in turn, generate complex interactions among traffic 

flows. They further illustrated the complex nature of European Union (EU) ATFM solutions, the 

benefits that could be obtained by purposely assigning airborne holding delays to some flights 

and the issues of equity that arose as a result of the interactions among traffic flows. Specifically, 
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they showed that in certain circumstances, it is better in terms of total delay and delay cost to 

assign to a flight a more expensive airborne holding delay than a ground delay. 

 

2.11 The Cumulative Costs of Air Traffic Delay  
 

Milan (2009) defined flight delay as any flight departure or arrival that falls more than 15 

minutes behind schedule. Milan also confirmed that flight delays have become an inherent 

feature of the modern air transport system. Delays are caused by internal and external factors 

working individually and/or in combination. The main internal factor is the imbalance between 

the demand for flights and the capacity of the given air transport system component that may 

happen under both regular and irregular operating conditions. For example, in the former case, 

capacity may not meet demand because of airline scheduling practice. In the latter case, capacity 

may not meet demand because of unforeseen shortcomings with certain system component. 

The United States Congressional Committee (USCC) stated that with the rising price of oil, 

flying the friendly skies is not only a costly endeavor, but inefficient as well (Ehrlich, 2008) . 

They continued to note that delayed flights in the year 2006 alone consumed about 740 million 

additional gallons of jet fuel, according to the Joint Economic Committee (JEC), totaling to 

about USD 1.6 billion in extra fuel bills for the commercial airline industry. Furthermore 

analysis by the committee revealed that air traffic delay-related burning of jet fuel also led to the 

emission of about 7.1 million metric tons of carbon dioxide in the same year. And those numbers 

were predicted to go up, with wasted fuel costs potentially topping $2 billion in the year 2007. 

The committee's report, entitled "Your flight has been delayed again" called for an upgrade to the 

air traffic control system by converting the nation's radar based tracking system to satellite based 

technology. 
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Two factors that may explain the extent of air traffic delays in the United States including the 

network benefits due to hubbing and congestion externalities were reported (Mayer & Todd, 

2002) . Although they noted some benefits that accrue from air traffic delays, they also noted that 

Airline hubs enabled passengers to cross-connect to many destinations, thus creating network 

benefits that increased the number of markets served from the hub. Delays are the equilibrium 

outcome of a hub airline equating high marginal benefits from hubbing with the marginal cost of 

delays. However, congestion externalities were created when airlines did not consider that 

adding flights may lead to increased delays for other air carriers. In this case, delays represented 

a market failure. 

 

Analysis based at LaGuardia Airport, found out that prices fell by USD 1.42 on average for each 

additional minute of flight delay and that the price response was substantially larger in more 

competitive markets (Silke, 2008) . This implied that for only 100 passengers delayed at an 

airport, for say, 60 minutes, could result into a cumulative loss by an airline equivalent to USD 

8520. 

 

Further analysis by the Partnership for New York City, established that local air traffic 

congestion cost the US economy $2.6 billion in the year 2008,  (Billy, 2009) . Furthermore, 

delays that stemmed from the one-third of nationwide flights that went through New York ended 

up having an impact in causing a delay in three-quarters of those nation's flights. The head of the 

Partnership then, Kathryn Wylde recommended modernization of air-traffic control and routes 

that planes used nationwide, a move that would cost an estimated $22 billion. However, doing so 
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would allow planes to take full advantage of satellite-based air navigation and no longer only use 

long and straight arrival paths. 

 

These analyses revealed the impending gap that exists in air traffic management that urgently 

require a study to assess and develop a dynamic tool that can be used in maximizing aircraft 

utility at airports especially in the developing countries. 

 

2.12 Justification of Stochastic Models in this Study 
 

There are two main techniques of modeling which are categorized as deterministic and stochastic 

approaches. The former has been applied more regularly, hence its popularity compared to the 

latter. Deterministic modeling assumes perfect knowledge of the system inputs under study both 

in the objective function and its constraints. On the contrary, stochastic models assume 

uncertainty of parameters either in the objective function or its constraints or even both in the 

objective function and its constraints. Probability theory therefore plays a fundamental role in the 

development of stochastic models.  

 

Maybeck (1979) gave three basic reasons why deterministic system and control theories do not 

provide a totally sufficient means of performing system analysis and design. First, mathematical 

system model is perfect. Any such model depicts only those characteristics of direct interest to 

the modeler.  Second, those dynamic systems are driven not only by our own control inputs, but 

by disturbances which we can neither control nor model deterministically. For example, if a pilot 

tried to command a certain angular orientation of the aircraft, the actual response will differ from 

his expectation due to wind battering or simply his/her inability to generate exactly his desired 
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response from his/her own arms and hands on the control stick. Third, sensors do not provide 

perfect and complete data about a system; they only generally provide some of the information 

one would like to know.    

 

2.13 Stochastic Programming and Air Traffic Management 
 

Stochastic programming (SP) deals with a class of optimization models and algorithms in which 

some of the data may be subjected to significant uncertainty. Such models are appropriate when 

data evolve over time and decisions need to be made prior to observing the entire data stream. 

 

Under uncertainty, the system operates in an environment in which there are uncontrollable 

parameters which are modeled using random variables. Consequently, the performance of such a 

system can also be viewed as a random variable. Accordingly, SP models provide a framework 

in which a design can be chosen to optimize some measure of the performance (random 

variable). It is therefore natural to consider measures such as the worst case performance, 

expectation and other moments of performance, or even the probability of attaining a 

predetermined performance goal. Furthermore, measures of performance must reflect the 

decision maker's attitudes towards risk. 

 

Stochastic programming provides a general framework to model path dependence of the 

stochastic process within an optimization model. Furthermore, it permits unaccountably many 

states and actions, together with constraints and time-lags. One of the important distinctions that 

should be highlighted is that unlike DP, SP separates the model formulation activity from the 
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solution algorithm. One advantage of this separation is that it is not necessary for SP models to 

obey the same mathematical assumptions. 

 

2.14 Optimization in Air Traffic Flow Management 
 

Air Traffic Flow Management (ATFM) optimization has been a topic of research for about a 

decade. There are two main categories of published research in this area: (1) optimization models 

that account for airport arrival and/or departure capacities, but ignore en-route capacity 

constraints, and (2) those that account for both airport and en-route capacity constraints. The 

former class of problems is commonly known as ground holding problem (GHP), while the latter 

is sometimes termed the multi-airport air traffic management problem.  

 

The objective of the ground holding problem class of this problem was to minimize the sum of 

airborne and ground delay costs in the face of anticipated demand-capacity imbalances at 

destination airports, by assigning ground delays to flights. Within the domain of GHP, there are 

two sub-problems: the single airport ground holding problem (SAGHP) and the multi-airport 

ground holding problem (MAGHP). In SAGHP, the problem is solved for one destination airport 

at a time. In the MAGHP, a network of airports is considered, so that delay on a given flight 

segment can propagate to down segments flown by the same aircraft. Some treatments of the 

MAGHP also consider crew and passenger connectivity effects.  

 

A deterministic model for SAGHP, in which the objective function minimizes the total cost of 

ground holding set of flights, was proposed (Terrab et al., 1993) . The cost of delaying each 
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flight is represented through a linear cost function with flight-specific parameters, which is 

supplied as input.  

 

Hoffman et al. (1999) proposed a deterministic model for the SAGHP with banking constraints, 

which imposes the condition that one or more groups of flights must arrive within pre-specified 

time windows.  

 

An optimization model for mitigating bias from exempting flights from a GDP was then 

proposed (Thomas Vossen et al., 2002). Deterministic optimization, formulated as an integer 

program (IP), for multi-airport ground holding programme, MAGHP was first proposed (Vranas 

et al., 1994) . Their computational study showed exorbitant computing times for solving the IP 

optimally under realistic cases. Dimitris & Patterson (1998) provided a stronger formulation to 

the deterministic MAGHP. Uncertainty in airport capacities has been addressed mainly in 

context of SAGHP; although (Vranas et al., 1994)  provided some treatment of stochastic version 

of MAGHP.  

 

A static stochastic IP formulation for solving the SAGHP under uncertainty in airport arrival 

capacities was first suggested (Richetta et al., 1994) . Thereafter, (Ball et al., 2003) proposed a 

modified version of the static stochastic optimization for SAGHP, which solves for optimal 

number of planned arrivals of aircraft during different time intervals. In the static models, 

decisions related to departure delays of flights are taken once at the beginning of planning 

horizon, and not revised later. However, (Richetta et al., 1994) attempted to solve this limitation 

by formulating a multistage stochastic IP with recourse for SAGHP. In their model, the ground 
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delays of flights are not decided at the beginning, but at the scheduled departure time of the 

flights. However, ground delays once assigned cannot be revised later in their model. 

 

Deterministic optimization models addressing en-route capacity constraints were formulated as 

multi-commodity network flow problem (Helme, 1992) , and (Dimitris & Patterson, 2000) . 

Unlike single-commodity flow network formulations, these models are computationally harder 

and do not guarantee integer solutions from Linear Programming (LP) relaxations. One of the 

assumptions made (Helme, 1992)  was that each aircraft route is pre-determined before its 

departure. They established that the model addresses routing as well as scheduling decisions, but 

it produces non-integer solutions for even small scale problems. Therefore the authors suggested 

heuristics to achieve integer solutions.  

 

Disaggregated deterministic integer programming models for deciding departure time and route 

of individual flights were formulated (Dimitris et al., 2000) . Although both formulations 

produce non-integer solutions from LP relaxation, the latter model achieves integrality in many 

more instances compared to the former, by virtue of its formulation. An attempt to address 

weather related uncertainty in en-route airspace congestion was made (Arnab et al., 2003) . Their 

work focused on dynamically rerouting an aircraft across a weather impacted region. 

 

In summary, stochastic optimization methods for ATFM have been applied to solve the SAGHP, 

while there is much left to be done. One unexplored area is dynamic models that can adapt to 

updated information as time progresses, to revise the ground delay decisions of flights. Another 

is models that address both en-route airspace and airport capacity in a stochastic setting. Finally, 
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to implement dynamic decision making in CDM environment, we must develop models that 

accommodate both decentralized and centralized decision making.  

 

2.15 Theoretical Framework 
 
A number of variables that impact on air traffic management were identified, the critical 

variables were identified, and their relationship to air traffic flow management explored in detail.  

 

Figure 2.4 shows the interaction of parameters from which the stochastic optimisation model 

system is derived. Two basic sources of data used are the aviation and meteorological data 

sources which generate indicators for air traffic management and subsequently use them to 

project airport capacity demand. When it is established that the demand does not exceed the 

airport capacity, normal operations using the preset aircraft schedules are used, otherwise, 

capacity scenarios, probabilities of aircraft delay at departure and arrival, airport inefficiencies at 

departure and arrival and subsequently the airborne to ground delay cost ratio. The parameters 

are then used as inputs into the stochastic optimisation model to compute optimal airport utility 

level. 

 

Figure 2.6 further demonstrates the relationship between the aviation and meteorological 

parameters and the airport utility functions. It is argued that timely operations of aircrafts at the 

airport generate a 100 percent level of airport utility. Hence, delays in aircraft departures and 

arrival tend to reduce the utility of an airport. 
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2.15.1  Air Traffic Management Logical Framework 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 Deriving optimal aircraft utility  
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2.15.2  Conceptual Framework 
 
The conceptual framework below is an illustration of the causal-effect relationship between 

weather parameters, aviation parameters and the aircraft delay. The effect of the aircraft delay on 

the airport utility is then derived as indicated in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Delay based air traffic flow management factors 
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2.15.3  A detailed Conceptual Framework 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Conceptual Framework of the Study 
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CHAPTER THREE 

STATISTICAL MODELS FOR AIR TRAFFIC MANAGEMENT 
 

This chapter presents data sources, specific variables collected, data management process 

followed by data analysis and challenges encountered both in data collection and during data 

management process. Specifically, the chapter gives the process of computation of the number of 

aircrafts that delay both to depart and arrive and also aggregation of the variables on a daily 

basis. Subsequently, statistical models are developed that can be used to develop informed 

decisions by the air traffic management. Explicitly, the statistical models developed during the 

study were logistic regression models, the stochastic frontier models and the ARIMA models. 

The models are developed using operational data from Entebbe International Airport in Uganda. 

They are presented in the following order logistic model, the stochastic frontier models and the 

ARIMA models since one form produces results that invoke the other.  

 

3.1 Data Description: Sources and Preparation 
 

The data for the study were collected from the Civil Aviation Authority (CAA) and the National 

Meteorological Centre (NMC). Specifically, data collected came from the Statistics Department 

of the Civil Aviation Authority and the Briefing Office of the Department of Meteorology in 

Entebbe, Uganda.  The reliability of the models is strongly dependant on the amount and quality 

of data used for model formulation and calibration. Models were formulated using aircraft delay 

program parameters and weather conditions at Entebbe International Airport.  
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3.1.1 Aviation Data Logs 
 

On a daily basis, specialists record all facility operations from the beginning of the day until the 

end of the day on a twenty four hour basis. The main components of these records were the 

actual and expected times of arrival and departure respectively recorded for every incoming and 

outgoing flight at the airport. These data commonly referred to as manifest data are then entered 

and stored in a database and only referred to whenever there is for example an investigation of 

aircraft accident or incidence. Table 3.1 gives the main variables for the data of interest in this 

study. The departure delay duration was then computed by obtaining the difference between 

actual and expected departure time while arrival delay duration was estimated by computing the 

difference between actual and expected arrival time. In either way, an aircraft is said to delay 

when actual time is greater than the expected time. Given the variability of operations of aircrafts 

over the scope of time for the study, the data was aggregated to obtain proportions of delay per 

day, thus generating 1827 records representing 1827 days in the period 2004 to 2008. 

 

3.1.2 Meteorological Data Logs 
 

Weather related data is of immense application and one of the main uses is to support the 

aviation industry in its aim to maintain high and reliable aircraft flow. The weather data logs 

comprised of a number of parameters referred to as a METAR, which is a French abbreviation 

for MÉTéorologique Aviation Régulière, and used to report specific weather data on an hourly 

basis. A typical METAR report contains information on temperature, dew point, wind speed and 

direction, precipitation, cloud cover and heights, visibility and barometric pressure all of which 

contribute to the understanding of the horizontal and vertical stochastic phenomena of weather. 
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The data in METAR report is coded as a way of international standardization such that it may be 

understood by anyone irrespective of the language barrier. This coding is managed a United 

Nations body called the World Meteorological Organisation. 

 

Weather conditions and runway configurations play a major role in determining airport 

capacities and the smooth flow of aircrafts at an airport. Meteorological data for aviation are 

collected using the semi-automated method that involves both manual readings and use of the 

Satellite Distribution System (SADIS) to track weather parameters along the major stages along 

the aircraft’s trajectory. Weather variables were mainly used to determine distributions of 

Instrument Flight Rule conditions that included ceiling height and visibility. A ceiling below 

1000 feet or a visibility less than 3 miles marks Instrument Flight Rule conditions according to 

ICAO regulations.  Table 3.1 gives key variables of interest to this study. 
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Table 3.1 is a data dictionary showing various characteristics of the variables used in this study, 

their data types and general description. 

 

Table 3.1: Data dictionary for the model variables 
 
Field name Type  Upper 

limit  
Lower 
limit 

Continuous 
/Discrete  

Description  

Date  Date Dec. 
2008 

Jan. 
2004 

Discrete Date of aircraft operation 

Scheduled  Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of daily scheduled flights 

Non-scheduled Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of daily non-scheduled 
flights 

domestic Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of daily domestic flights 

International Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of daily domestic flights 

POBin Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of daily persons on board 
on the incoming aircrafts 

POBout Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete  

Number of persons on board on the 
outgoing aircraft 

GDP Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of aircrafts that have 
delayed to depart on a daily basis 

AHP Integer Dec. 
2008 

Jan. 
2004 

Scale 
discrete 

Number of aircrafts that have 
delayed to arrive on a daily basis 

Visibility Float Dec. 
2008 

Jan. 
2004 

Scale 
continuous 

Average daily visibility 

Windrecn Float Dec. 
2008 

Jan. 
2004 

Scale 
Continuous 

Average daily visibility 

Windsped Float Dec. 
2008 

Jan. 
2004 

Scale 
Continuous 

Average wind speed 

QNH Float Dec. 
2008 

Jan. 
2004 

Scale 
Continuous 

Queen’s Nautical Height 
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3.2 Data Management and Analysis 
 

To achieve objectives of the research, a number of tools were applied to the data collected from 

the Briefing Office of National Meteorological Centre and the statistics office of Civil Aviation 

Authority of Entebbe International Airport. Aviation data were obtained in an excel format with 

many files each storing daily data for a specific month. On the other hand weather data were 

extracted from records stored on hardcopies. Given this scenario, the data had to undergo 

thorough data processing and cleaning after merging based on date as a key field. The researcher 

synchronized data from the two sources to obtain uniformity of daily data for the period of five 

years ranging from 2004 to 2008. The earlier years were not considered because their data either 

lacked uniformity or were grossly missing vital parameters. The data was further aggregated into 

daily averages. In the absence of aircraft delay logs in terms of time at the Entebbe International 

Airport, the number of flights delayed in a day and those on time, both at departure and arrival 

were computed to obtain the number of aircrafts that experienced delay. From the same variable 

transformations, other variables were obtained, among which is the dichotomous variable 

indicating two categories which are 0 = ‘On time’ and 1 = ‘Delayed’.  

 

3.2.1 R Statistical Computing Language 
 
R was inspired by the S language environment which was principally developed by John 

Chambers, with substantial input from Douglas Bates, Rick Becker, Bill Cleveland, Trevor 

Hastie, Daryl Pregibon and Allan Wilks (R Development Core Team, 2009) . A number of 

statistical software exist for data analysis, some of which fairly attempt to provide modeling 

environment, but R was used in this study because of the more convenient programming 

environment it provides. R is an integrated suite of software facilities for data manipulation, 
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calculation and graphical display. It includes an effective data handling and storage facility, a 

suite of operators for calculations on arrays, in particular matrices, a large, coherent, integrated 

collection of intermediate tools for data analysis, graphical facilities for data analysis and display 

either on-screen or on hardcopy, and a well-developed, simple and effective programming 

language which includes conditionals, loops, user-defined recursive functions and input and 

output facilities. Furthermore, for computationally-intensive tasks, C, C++, C# and FORTRAN 

code can be linked to R and called at run time. 

 

3.3 Statistical Models in Air Traffic Delay 
 

A strong emphasis is placed on statistical models as they significantly aid to generating reliable 

decisions and policy formulations. Konishi & Kitagawa (2007) stated that statistical modeling is 

a big source of information for decision making especially for probabilistic events such as 

aircraft delay at airports. Wang et al. (2002) proposed applications of advanced technology in 

transportation, but this he said should be integrated with statistical models and simulations to 

enhance the relevance of advanced technology. This was deemed important because even with 

satellite enabled systems for management of air traffic flow, inefficient use of statistical 

modeling and analysis would render such a system incapable of maximum utilization. Wesonga 

et al. (2008) pioneered the development of statistical models for management of air traffic flow 

by generating statistical models based on air traffic delays at Entebbe International Airport.  
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3.3.1 Normality Tests of Air Traffic Delay 
 
The Shapiro-Wilk test of normality in R was preferred over the Kolmogorov-Smirnov test 

because conceptually the Shapiro-Wilk involves arranging the same values by size and 

measuring fit against expected means, variances and covariances. These multiple comparisons 

against normality give the test more power than the Kolmogorov-Smirnov test.   The test 

produced the following test analyses (Wd = 0.9609, p-value = 2.2e-16, N=1827) and (Wa = 

0.9660, p-value = 2.2e-16, N=1827) for the proportion of departure and arrival delays 

respectively.  This implied that for both cases of departure and arrival delays, the normality tests 

failed. Thus, further graphical investigations showed that the data for both proportions of 

departure and arrival delays are negatively skewed as shown in Figure 3.1. Furthermore, the 

Welch two sample t-test was applied to test whether the true difference between the means of 

aircraft proportions of departure and arrival delays was zero. Alternatively, it was used to test the 

hypothesis that there is no difference between aircraft departure and arrival delay proportions.  

The test gave (t = 10.3749, df = 3552.125, p-value < 2.2e-16), implying that the true difference 

in their means is not equal to zero. It was further established that the proportions of departure 

delay are on average six percent greater than the proportions of arrival delay. 
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The two plots in Figure 3.1 represent densities against the natural logarithms for the proportions 

of departure and arrival delays respectively. They suggest that either of the delays follow the 

exponential distribution functions. Logarithms were taken so as to standardise the data to enable 

visual inspection of the deviations from normality of delay proportions. 

 

 

Figure 3.1 Probability density against proportions of aircraft delay 
 

3.3.2 Proportion of Scheduled and Non-scheduled Flights 
 
There are eight types of movements recorded at Entebbe International Airport, they include; 

private, schedules, freighters, charters, military, training/testing, non-commercial and other non-

commercial flights. To achieve the objectives of this study, scheduled aircrafts are defined as 

those with estimated time of either departure or arrival. It should be noted that the seven types of 

aircraft movements enumerated above are programmed before their operations are permitted at 
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the airport. It is the duty of the air traffic management to programme these aircrafts accordingly. 

However, the less time given to plan their movements is what sometimes causes inconveniences 

to those that have been programmed, say at the beginning of the day. Hence, for this study, all 

the aircrafts without expected and actual times of departure and arrival are not considered.  A 

simple graphical comparison of the two samples of the number of scheduled and non-scheduled 

flights using box-plots was generated, as shown in Figure 3.2.  

 

Figure 3.2 Box plot of the proportion of scheduled and non-scheduled flights 
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means is not equal to 0 (zero). We further used the F test to test for equality in variances since 

the two samples are from normal populations. The following results were obtained; (F = 1.0009, 

num df = 1826, denom df = 1826, p-value = 0.9839), implying that we reject the null hypothesis 

and conclude that the true ratio of variances is not equal to 1 (one). 

 

The non-scheduled types of flights were found to affect timeliness of aircraft other aircrafts’ 

operations as shall be explained further in due course.  

 

One way to compare graphically the two samples was by using the empirical cumulative 

distribution functions for the proportion of scheduled flights with the proportion of non-

scheduled flights as shown in Figure 3.3.  
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Figure 3.3 Empirical Cumulative Distribution Function for scheduled and  
  non-scheduled flights 

 
 
The Kolmogorov-Smirnov test is of the maximal vertical distance between the two empirical 

cumulative distribution functions, assuming a common continuous distribution resulting into (D 
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3.4 Logistic Modeling 
  
Logistic regression model is the case that the dependent variable is a dummy variable with value 

‘0’ if during a given day aircrafts’ operations are classified as being on time and ‘1’ if the day’s 

aircraft operations are classified as delayed, (Konishi et al., 2007) and (Nerlove & Press, 1973) . 

An aircraft is said to have delayed if the difference between the actual time and the scheduled 

time of arrival or departure respectively is positive. In this study, the dummy variable of interest 

captures aircraft delay on the daily basis as ‘1’ if the proportion of aircrafts that delay to depart 

or arrive was greater than the proportion of aircrafts that arrive or depart on time. Otherwise, the 

dummy variable takes on the value ‘0’.  Logistic analysis is deemed as useful for this 

investigation because the study aimed to assess the dynamics of factors that determine aircraft 

delay at Entebbe International Airport (Equation 3.1). Furthermore, a logistic regression model 

estimates the probability with which a certain event will happen or the probability of a sample 

unit with certain characteristics expressed by the categories of the predictor variables, to have the 

property expressed by the value 1 representing aircraft delay. The estimation of this probability 

is performed by using the cumulative logistic distribution (Equation 3.2), where ݏ′ߚ are the 

regression coefficients of the categories to which the sample unit belongs.  

 

The following formulation was deemed appropriate representation of the model. 

)ߨ)݈݊ ௜ܺ)) =    ∑ ௜௝ݔ௝ߚ
௣
௝ୀଵ      ……     (3.1) 

Where: 

 ௝ represent coefficients of the modelߚ 

௜ܺ = ,௜ଵݔ} ,௜ଶݔ … ,  ௜௣}  represent a set of explanatory variablesݔ

 

The logit, ݈݊(ߨ( ௜ܺ)) on the left hand side of equation 3.1 represent the logarithm of the odds 

which symbolizes the conditional probability that a certain day is classified as a delay day given 
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all the explanatory variables and its determinants are subsequently tested for significance of the 

underlying relationship.  

ݏܱ݀݀ = గ(௑)
ଵିగ(௑)

= ∑ ݌ݔ݁ ఉೕ௫೔ೕ
೛
ೕసభ        …………….     (3.2) 

This implies that the odds are exponential function of ௜ܺ that provides a basic interpretation of 

the magnitude of the coefficients. When ߚ௝is positive, it implies increasing rate while when ߚ௝  is 

negative, this implies decreasing rate and the rate of climb or descent increases as the magnitude 

of ߚ௝increases. Conversely, the magnitude of ߚ௝signifies the increasing or decreasing effect of a 

given determinant on the daily proportion of delay. If ߚ௝ = 0, it would mean that the daily 

proportion of aircraft delay is independent of ௜ܺ.   

)ߨ ௜ܺ) =  ௘௫௣
 ∑ ഁೕೣ೔ೕ
೛
ೕసభ

ଵା௘௫௣
 ∑ ഁೕೣ೔ೕ
೛
ೕసభ

                ……………    (3.3) 

 

Where ߨ( ௜ܺ) represent the probability that on a given day the proportion of the aircrafts that 

delay to depart or arrive given the influence of meteorological and aviation parameters. 

 

3.4.1 Results of the Logistic Model for Air Traffic Delay  
 
The logistic model with a two-category dummy variable, that is, the proportion of aircrafts 

delaying their operations and the proportion of aircrafts that operated on time was created with 

an objective of generating corresponding probabilities for an aircraft operating on time and 

experiencing delay based on daily.  The logistic model for a delay of an aircraft before departure 

and delay during arrival at the airport were fitted and the results are shown in Table 3.2. The 

Table shows the logistic model parameters with a category of interest being a 50 percent 
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threshold of proportion that aircrafts experience delay at departure and arrival at Entebbe 

International Airport. 

 

The logistic model presented in Table 3.2 shows that in both cases the intercepts, number of 

freighters recorded per day and the number of other non-commercial flights are significant. Other 

parameters found significant to determine that on a certain day at a 50 percent threshold, the 

proportion of departure delay included arrival delay as a dummy, number of arrival delays, 

number of operations, number of scheduled flights and the number of chartered flights per day. 

The number of arrival delay and number of operations both showed a negative trend implying 

that their increase results into a decrease in the proportion of departure delay at the rates of 0.11 

and 0.39 respectively. Thus the rate of descent in the proportion of daily delay increases more 

with the number of operations than with the number of arrival delay per day. The other 

parameters for determining the proportion of departure delay showed that their increase results in 

an increase in the proportions of daily departure delay. In the order of the strength of their effect 

they are: arrival delay dummy (0.72), number of freighters (0.59), number of other non-

commercial flights (0.57), number of scheduled flights (0.46) and the number of chartered flights 

(0.32).  
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Table 3.2 Logistic model dynamics for aircraft departure and arrival delay 

 
Proportion of departure delay  Proportion of arrival delay 

DV: dummy daily 

proportion of departure 

delay 

Est. of 

coeffs. 

S.E Level 

of 

sign. 

DV: dummy daily 

proportion of arrival 

delay 

Est. of 

coeffs. 

S.E Level 

of 

sign. 

Intercept 1.1 0.44 * Intercept 0.95 0.31 ** 

arrival delay dummy 0.72 0.33 * departure delay 

dummy 

-0.57 0.27 * 

number of arrival delay -0.11 0.01 ** number of freighters -0.14 0.03 ** 

number of operations -0.39 0.14 ** number of other non-

commercial flights 

0.03 0.01 ** 

number of scheduled 

flights 

0.46 0.14 ** number of persons on 

board in 

0.01 0.01 ** 

number of chartered flights 0.32 0.14 *  

number of freighters 0.59 0.15 ** 

number of other non-

commercial flights 

0.57 0.14 ** 

4Akaike Information Criterion, AIC= 731.5  Akaike Information Criterion, AIC=1732.6   

Note: ** significant at 0.01 level; * significant at 0.05 level 

 
 
On the other hand to determine the proportion of arrival delay, the explanatory variables found to 

be significant, but with a negative effect included departure delay as a dummy and number of 

freighters. The rate of their effect shows that departure delay as a dummy (-0.57) has a greater 

reducing effect than the number of freighters (-0.14) on arrival delay.  

                                                        
4 AIC is a measure of the goodness of fit of the estimated statistical model, ܥܫܣ = 2݇ −  ,ܮ2݈݊
where k is the number of parameters in the model and L is the maximized value of the likelihood 
function for the estimated model. 
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Since the logistic model has a curve rather than a linear appearance, the logistic function implies 

that the rate of change in the odds, ߨ( ௜ܺ) per unit change in the explanatory variablesݔ௜ varies 

according to the relation డగ(௑೔)
డ(௫)

= )ߨߚ ௜ܺ)[1 − )ߨ ௜ܺ)]. This implies that for the odds of the 

proportion of delay ߨ( ௜ܺ) = ଵ
ଶ
 and taking the coefficient of the number of scheduled flights, ߚ =

0.46 the slope is డగ(௑೔)
డ(௫೔)

= 0.46 ∗ ଵ
ଶ
∗ ଵ
ଶ

= 0.115.  For example, the value 0.115 represents a 

change in the odds of departure delay, ߨ( ௜ܺ) per unit change in the number of scheduled flights. 

In simpler terms, for every 100 scheduled flights at Entebbe International Airport, 11 will delay 

to departure.  

 

Post logistic estimation analysis was performed to estimate the probability of the daily 

proportions of departure and arrival delay by computing mean values of the estimated daily 

probabilities. This analysis was able to generate estimated probabilities per day, resulting into 

1827 probabilities. To obtain an overall probability, an average was computed for each departure 

delay and arrival delay respectively as shown in Table 3.3. 
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Table 3.3 Estimated probability for aircraft departure and arrival delay 
 
 

Category 1st Quartile 3rd Quartile Mean Probability 

Estimated departure delay given 

a 50 percent delay threshold 

0.92 0.99 0.94 

Estimated arrival delay given a 

50 percent delay threshold 

0.77 0.89 0.82 

 
 
Generally, holding other explanatory variables constant at 50 percent threshold level, the 

probability of aircraft departure delay was established to be relatively higher than for aircraft 

arrival delay. Based on the collaborative nature of airports, one can conclude that the lower 

arrival delay compared to departure delay is mainly due to factors that are exogenously 

determined outside Entebbe International Airport.   

 

Furthermore, post logistic estimation analysis for four different thresholds in the set 

{50, 60, 70 80} was performed to estimate the probability of departure and arrival delay. Use of 

different thresholds generated dependent variables with varying counts of categories. The results 

are shown in Table 3.4. 
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Table 3.4: Variation of predicted delay probability with the threshold level 

 
 Probability using logistic model 

Departure delay Arrival delay 

Delay 

Threshold 

(percent) 

No. of 

variables in 

the model 

1st 

quartile 

3rd 

quartile 

Mean No. of 

variables in 

the model 

1st 

quartile 

3rd 

quartile 

Mean 

50  8 0.92 0.99 0.94 4 0.77 0.89 0.82 

60  9 0.17 0.83 0.49 10 0.12 0.55 0.36 

70  7 0.02 0.50 0.26 3 0.01 0.32 0.18 

80  2 0.00 0.08 0.05 3 0.00 0.05 0.04 

 

The results show that the predicted delay for aircrafts at departure and arrival reduces as the 

threshold level is increased as demonstrated in Figure 3.4. Conversely, lowering the threshold of 

delay increases the predicted probability of delay for both aircraft departure and arrival. In both 

cases, the mean predicted probability for aircrafts departing and arriving at the Airport that used 

more predictors were 0.49 with 9 predictors and 0.36 with 10 predictors respectively. However, 

in both of these cases, there is a visibly characteristic large deviation between the estimates for 

the 1st and 3rd quartiles, but larger for the departure than arrival estimated probabilities.  
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Figure 3.4: Variation of predicted delay probability with the threshold level 
 

 

3.4.2 Analysis of Probabilities from the Logistic Models 

 
Using the logistic modelling post analyses, probabilities were predicted on daily basis. In this 

section, a presentation of the characteristic time series behaviour of these probabilities is done 

for the period 2004 through 2008 covering 1827 records that match with the number of days for 

the stated period. It is evident from Figure 3.5 that the lower the threshold proportion of delay; 

the higher are the estimated probabilities that the airport will experience a departure delay. 

Furthermore, as the threshold is increased, thereby allowing lesser departure delay, the predicted 

probabilities over time breaks into visibly two trends, at 60 and 70 percentage threshold levels, 

but tends to smoothen at 80 percentage threshold level.  This generally indicates the predicted 

aircraft departure delay probabilities exhibited a positive trend over the period 2004 to 2008 

given the explanatory parameters used in the logistic model. 
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Figure 3.5: Variation of predicted departure delay probability with Time (days) 
 

 

Figure 3.6: Variation of predicted arrival delay probability with Time (days) 
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Similarly, Figure 3.6 shows that the lower the threshold proportion of delay; the higher are the 

estimated probabilities that the airport will experience arrival delay. As the threshold is 

increased, thereby allowing lesser arrival delay, the predicted probabilities over time breaks into 

two trends from the year 2007 at 60 and 70 percentage threshold levels, but tends to smoothen at 

80 percentage threshold level. Generally this indicates that the predicted aircraft arrival delay 

probabilities exhibited a positive trend with a smaller slope over the period 2004 to 2008 given 

the explanatory parameters used in the logistic model. 

 

Probabilities of departure and arrival delay were computed annually using the threshold with 

more predictors. Table 3.5 shows how the probabilities of delay have been varying over years. It 

should be noted that these probabilities are conditional on a number of predictors of delay at 

Entebbe International Airport.  

Table 3.5 Variation of probability of departure and arrival delay from 2004 to 2008 
 
Year Probability of departure delay Probability of arrival delay 

2004 0.9454 0.3443 

2005 0.8986 0.4055 

2006 0.3534 0.9589 

2007 0.2164 0.0931 

2008 0.0795 0.0164 
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Figure 3.7: Departure delay probability within years for the period 2004-2008 
 

By using a delay threshold of 60 percent, the probability of departure delay as estimated by the 

logistic model for each year were plotted as shown in Figure 3.7. It shows that over the period 

2004 through 2008, the probabilities were diminishing implying a good management 

performance for the Airport. A delay threshold of 60 percent was applied because its 

measurement applied more explanatory variables, as shown in Table 3.4. 
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Figure 3.8: Arrival delay probability within years for the period 2004-2008 
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The collaborative nature of air traffic flow management divisions at different airports means that 

an aircraft’s arrival performance may be due to factors outside the arrival airport. The 

complexity of this collaboration is premised on the fact that for any arriving aircraft, it must have 

departed from some other airport. Therefore, the timeliness of the arriving aircraft is affected not 

only by factors at the arrival airport, but also those factors exogenously determined at the arrival 

airport. Similarly, departing aircrafts are primarily determined by factors within the airport, but 

also by factors other than those at the departing airport. 
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3.5 Aircraft Delay Stochastic Frontier Modeling  
 
Findings presented in Section 3.4 using the logistic model post analyses, revealed that there exist 

an inexplicable deviation between the proportions of daily aircraft delays and the predicted 

probabilities of delay. This section measures and analyses the efficiency component of aircraft 

daily departure and arrival delays at Entebbe International Airport in Uganda. Stochastic 

production frontier model is applied to measure the relative technical efficiency while also 

shedding light on the factors associated with these efficiency differences based on a framework 

that has been used in other related studies (Cheng & Caves, 2000; Pels et al., 2001) and (Good et 

al., 1995) .  

 
The technical efficiency (TE) in production management refers to the achievement of maximum 

potential output from a given amount of input factors while taking into account the physical 

production relationship. An airport operating at point A is technically efficient, while that 

operating at B is technically inefficient. The TE score for the technically efficient firm is 1 or 

100 percent, while for the technically inefficient score is computed from q/q* as shown in Figure 

3.9. 
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Figure 3.9 Technical efficiency principle 
 

The modelling estimation and application of stochastic production frontier were first proposed by 

(Aigner et al., 1977) and (Battese & Corra, 1977) .The production frontier analysis models are 

motivated by the idea that deviations from the production ‘frontier’ may not be entirely under the 

control of the production unit under the study. These models allow for technical inefficiency, but 

they also acknowledge the fact that random shocks outside the control of producers can affect 

output. They account for measurement errors and other factors, such as weather conditions at 

other airports, diseases and other anomalous events on the value of output variables, together 

with the effects of unspecified input variables in the production function. The main virtue of the 

model is that, at least in principle these effects can be separated from the contribution of 

variation in technical efficiency. The stochastic frontier approach is preferred for assessing 

efficiency in aircraft flow management at the airports because of the inherent stochastic 

characteristics of the parameters, (Sarkis, 2001) . 
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However, the distribution to be used for the inefficiency error has been source of contention 

(Griffin & Steel, 2004) . For this scenario, efficiency of aircrafts at airports in developing 

countries typically fall below the maximum efficiency levels that is possible, the deviation from 

actual maximum output becomes the measure of inefficiency and is the focus of interest for this 

study. Increasing the technical efficiency for an aircraft at an airport with due consideration of 

others would result in overall technical efficiency of a given airport. This way all aircrafts would 

be competing to be on time so that passengers who are destined to other airports by using other 

aircrafts are not delayed. At the same time, pressure due to aircraft route planning and 

optimisation by the air traffic management would be minimised.  

 

The stochastic frontier model proposed by (Aigner et al., 1977)  and then extended by (Huang & 

Liu, 1994) and (Battese & Coelli, 1995) is a good approach to explain the causes of deviations 

other than the explanatory variables identified in this study. Consider the proportion of aircrafts 

departing or arriving at an airport on a certain day denoted by i whose proportion of aircrafts 

delayed per day is determined by the following production function: 

݈݊ ௜ܻ = ௜ܺߚ +  ௜   …………………………….……   3.4ߝ

Where  

௜ߝ = ௜ݑݒ  ௜ݑ݉−

 ݅ = 1,2, … , ܰ Represents number of days    

௜ܻ  Is the proportion of aircrafts that delay (departure or arrival) during the ݅௧௛ day 

௜ܺ  Is (1xk) vector of explanatory variables 

 Is (1xk) vector of unknown scalar parameters to be estimated  ߚ



66 
 

 ௜ Is an idiosyncratic error term similar to that in conventional regression model andݑݒ

is assumed to be independently and identically distributed as ܰ(0, ௩௨ଶߪ ). The term 

captures random variation in output due to factors beyond control of the airport 

such as some other parameters of weather not considered in the study and other 

omitted explanatory variables. 

 ௜ is a non-negative random variable accounting for the existence of technicalݑ݉

inefficiency in the proportion of delay and it is identically distributed as half-

normal ݉0)ܰ|~ݑ, ௔ߤ)ܰ|~ݑ݉ ଶ)|) or truncated normalߪ ,  .ଶ)|) distributionsߪ

 

The inefficiency effect of ݉ݑ௜is assumed to consist of both unobserved systematic effects, which 

vary on different days. Coelli et al. (2005) stated that the subtraction of the nonnegative random 

variable ݉ݑ௜, from the random error ݑݒ௜, implies that the logarithm of the production is smaller 

than it would otherwise be if technical inefficiency did not exist. However, following Coelli et 

al. (2005) , the inefficiency distribution parameter can also be specified as  

௜ݑ݉ = ଴ߪ + ߪ௜ݖ +  ௜ …………..…………………….………   3.5ݓ

Where 

,௜  is distributed following ܰ(0ݓ  (௪ଶߪ

 ௜ is a vector of airport specific effects that determine technical inefficiencyݖ

 is a vector of parameters to be estimated ߪ

Airport specific factors that were found to affect technical efficiency include airport operational 

level, number of passengers, visibility and QNH, among others. Input variables may be included 

in both Equations (3.18) and (3.19) provided that technical inefficiency effects are stochastic 

(Battese et al., 1995) .  
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The condition that ݉ݑ ≥ 0 in equation (3.18) guarantees that all observations either lie on, or are 

beneath the stochastic production frontier. Following (Battese et al., 1977)  and (Battese et al., 

1995) , the variance terms are parameterized by replacing ߪ௩௨ଶ and ߪ௠௨
ଶ  with 

ߪ  = ௩௨ଶߪ + ௠௨ߪ
ଶ  and ߛ = ఙ೘ೠ

మ

 ఙೡೠమ ାఙ೘ೠ
మ  ………………………………  3.6 

The value of ߛ ranges from 0 to 1, with the value equal to 1 indicating that all the deviation from 

the frontier are due entirely to technical inefficiency  (Coelli T. & Perelman, 1999) . The 

technical efficiency of aircrafts on the i୲h day can be defined as:  

 

௜ܧܶ =
ா(௒೔ ௠௨೔ൗ ,௑೔)

ா(௒೔ ௠௨೔ୀ଴ൗ ,௑೔)
= ݁ି௠௨ ……………………………………   3.7 

Where; E is the expectation operator. According to (Battese & Coelli, 1988) the measure of 

technical efficiency is based on a conditional expectation given by Equation (3.7), given the 

value of   ݑݒ௜  ௜ evaluated at the maximum likelihood estimates of the parameter in theݑ݉−

model, where the expected maximum value of ௜ܻ is conditional on ݉ݑ௜ = 0. The measure 

௜ܧܶ  takes the value between zero and one and the overall mean technical efficiency of the 

proportion of aircraft delay at the airport on all sampled days is given by: 

ܧܶ  = ቊ
ଵିఝ[ఙ೘ೠିቀ

೘ೠ
഑೘ೠ

ቁ]

ଵିఝ( ೘ೠ
഑೘ೠ

)
ቋ ݁ି௠௨ାభమఙ೘ೠ

మ
  ……………………   3.8 

Where;  

 ߮(. )  represents the density function for the standard normal variable 

A variety of distributions for example exponential, truncated-normal and gamma are used to 

characterize the technical efficiency term ݉ݑ௜ in the existing literature that apply the stochastic 

production frontier. While models that involve two-distributional parameters for example gamma 
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and truncated normal can accommodate a wider range of possible distributional shape, their 

application appears to come at a potential cost of increased difficulty in identifying parameters 

(Ritter & Simar, 1997) . Different simulations exercises carried out by (Greene, 2003)  indicated 

that the most straightforward model, that is, half normal is more appropriate from the statistical 

point of view. Hence, stochastic frontier analysis on the factors affecting the proportion of 

aircraft delay on a given day is based both on the truncated normal and the half-normal 

probability distribution. 

 

3.5.1 Stochastic Frontier Model for Determination of Aircraft Efficiency 
 
The functional forms developed to measure the physical relationship between inputs and outputs 

include Cobb-Douglas (CD) and the transcendental logarithmic (translog) functions. The 

translog production function reduces to the CD if all the coefficients associated with the second-

order and the interaction terms of aircraft flow inputs are zero. In this study, the generalized 

likelihood ratio tests are used to help confirm the functional form and specification of the 

estimated models. The correct critical values of the tests statistic come from a ߯ଶ distribution at 

the 5 percent level of significance and a mixed ߯ଶ distribution, which is drawn from (Kodde & 

Palm, 1986) . This study employed the translog stochastic frontier function in Equation (3.9) for 

the proportion of aircraft departure delay and Equation (3.10) for the proportion of aircraft 

arrival delay. 

௜(ܲܦܩ)݈݊ = ଴ߚ + ଵߚ ln(ܲܪܣ)௜ + ଶߚ ln(ܱܰܲܵ)௜ + ଷߚ ln(ܵܪܥ)௜ + ସߚ ln(ܣܪܥ)௜ + ହߚ ln(ܧܴܨ)௜ + ଺ߚ ln(ܰܨܥ)௜ +

଻ߚ ln(ܱܲܶ)௜ ௜(ܦܹܰ)ln ଼ߚ+ ௜(ܵܫܸ)ln ଼ߚ+ + ௜(ܪܰܳ)ln ଼ߚ + ௜ݑݒ  ௜  ………  3.9ݑ݉−

and 

௜(ܲܪܣ)݈݊ = ଴ߚ + ଵߚ ln(ܲܦܩ)௜ + ଶߚ ln(ܱܰܲܵ)௜ + ଷߚ ln(ܵܪܥ)௜ + ସߚ ln(ܣܪܥ)௜ + ହߚ ln(ܧܴܨ)௜ + ଺ߚ ln(ܰܨܥ)௜ +

଻ߚ ln(ܱܲܫ)௜ ଼ߚ+  ln(ܹܰܦ)௜ ௜(ܵܫܸ)ln ଼ߚ+ + ௜(ܪܰܳ)ln ଼ߚ + ௜ݑݒ  ௜  ………  3.10ݑ݉−



69 
 

Where 

 ݅ is the  day of operation 

݈݊ is the natural logarithm (log to base e) 

Various tests of null hypotheses for parameters in the production functions as well as in the 

inefficiency model may be performed using generalized likelihood-ratio test statistic defined by: 

ߣ  = −2[ln{ܮ(ܪ଴)} − ln{ܮ(ܪଵ)}] ……………………………………  3.11 

Where;  

 ଴ and theܪ represents the value of the likelihood function under the null (ଵܪ)ܮ and (଴ܪ)ܮ

alternative ܪଵ hypotheses, respectively. If the null hypothesis is true, the test statistic has 

approximately a chi-square distribution with the degree of freedom equal to the difference 

between parameters involved in the null and alternative hypotheses. 

 

3.5.2 Results of the Aircraft Stochastic Frontier Model 
 
The parameters of the stochastic production frontier models Equations (3.9) and (3.10) are 

estimated using the likelihood function. The stochastic production frontier model results are 

presented in Table 3.6. Aircraft technical efficiency variations based on aircrafts’ characteristics 

are summarized in Table 3.7.  
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Table 3.6 Aircraft departure delay stochastic model parameter estimates  
 
Dep: proportion of 

departure delay 

Truncated Normal Error Term 

 

Half-Normal Error Term 

 

Logs of Parameters 

Estimated 

coefficients 

Standard 

Error 

Level 

of sign 

Estimated 

coefficients 

Standard 

Error 

Level of 

sign 

(Intercept) 4.74 1.01 ** 4.48 1.06 ** 

Prop of arrival delay 0.13 0.01 ** 0.13 0.01 ** 

Number of operations 0.03 0.05  0.01 0.05  

Number of schedules -0.50 0.03 ** -0.49 0.03 ** 

Number of charters -0.13 0.01 ** -0.13 0.01 ** 

Number of freighters 0.01 0.01  0.01 0.01  

Non-commercial flts 0.01 0.01  0.01 0.01  

Persons on board 0.18 0.01 ** 0.18 0.01 ** 

Wind speed 0.01 0.01  0.01 0.01  

Visibility -0.17 0.05 ** -0.16 0.05 ** 

Queens nautical ht 0.10 0.12  0.14 0.13  

sigmaSq 0.22 0.03 ** 0.08 0.01 ** 

Gamma 0.93 0.01 ** 0.85 0.02 ** 

Mu -0.92 0.21 **    

log likelihood value: 381  366  

mean aircraft 

departure efficiency: 0.85 (N=1736)   0.81 (N=1736)   

 

** indicates 0.01 level of significance 
 
The likelihood ratio test was used to compare two models, the ordinary least squares, OLS 

without the inefficiency term and the Error Components Frontier, ECF with the inefficiency 

term.  Findings indicate that the log likelihood value for OLS, 298.41, with 12 degrees of 

freedom is less than the value for ECF, 381 with 15 degrees of freedom. Thus, approximating the 

probability density function of the test statistic by a chi-square distribution with 3 degrees of 

freedom, the ECF model is found to be superior compared to the OLS model.  
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Comparison of the two stochastic frontier models in Table 3.5, the likelihood ratio test shows 

that the model with the ECF following the truncated normal distribution (LL=381, DF=15) is a 

better model compared to one with ECF that follows the half-normal probability distribution 

(LL=366.13; DF=14) and significant at α=0.01 with 1 degree of freedom. 

Table 3.7 Aircraft arrival delay stochastic model parameter estimates  
 
Dep: proportion of 

arrival delay 

Truncated Normal Error Term 

 

Half-Normal Error Term 

Logs of parameters 

Estimated 

coefficients 

Standard 

Error 

Level 

of sign 

Estimated 

coefficients 

Standard 

Error 

Level 

of sign 

(Intercept) 4.70 0.99 ** 4.62 1.65 ** 

Prop of dep delay 0.42 0.03 ** 0.40 0.03 ** 

Number of operations -0.44 0.08 ** -0.42 0.09 ** 

Number of schedules -0.42 0.05 ** -0.43 0.05 ** 

Number of charters 0.06 0.01 ** 0.05 0.01 ** 

Number of frieghters -0.06 0.01 ** -0.06 0.01 ** 

Non-commercial flts 0.01 0.02 0.01 0.02  

Persons on board 0.28 0.02 ** 0.28 0.02 ** 

Wind speed 0.00 0.01 -0.00 0.01  

Visibility -0.26 0.07 ** -0.24 0.08 ** 

Queen’s nautical ht 0.13 0.14 0.13 0.20  

Sigma Squared 0.49 0.04 ** 0.19 0.01 ** 

Gamma 0.92 0.01 ** 0.85 0.02 ** 

Mu -1.35 0.18 **    

log likelihood value: -298 -332 

mean aircraft arrival 

efficiency: 0.80 (N=1736)   0.74 (N=1736)   

** indicates 0.01 level of significance 
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Similarly, for both of the models in Table 3.7, findings indicate that the log likelihood values for 

ECF with truncated normal error term and half-normal error term, -298.46; DF=15 and -332.03, 

DF=14 respectively were found to be greater than for their corresponding OLS models with log 

likelihood values -418.05; DF=12 and -418.05; DF=12 respectively. Thus, the ECF models are 

found to be more superior compared to their corresponding OLS models.  

 
Furthermore, given the two stochastic frontier models in Table 3.6, the likelihood ratio test 

shows that the model with the ECF following the truncated normal distribution (LL=-298.46, 

DF=15) is a better model compared to one with ECF that follows the half-normal probability 

distribution (LL=-332.03; DF=14) and it is significant at α = 0.01 with 1 degree of freedom. 

 

However, comparing the two predicted efficiencies generated from the superior stochastic 

frontier models for departure and arrival proportions of delay, the Spearman’s pairwise 

correlation test rejected the null hypothesis and concluded that the true rho is not equal to 0 (rho= 

- 0.0833, N=1827) as shown in Figure 3.10.  
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Figure 3.10 Comparison of Daily Aircraft Probability and Efficiency of departure and Arrival 
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Table 3.8 shows how technical efficiencies at Entebbe Internal Airport varied over the period 

over the study period, 2004 through 2008. It is clear that for both departures and arrivals, the 

efficiencies of operations were relatively high with values of over 80 percent for the period.  

 

Table 3.8 Variation of technical efficiency for aircraft departure and arrival delay 
from 2004 to 2008 

 
Year Efficiency of departure delay Efficiency of arrival delay 

2004 0.8992 0.8590 

2005 0.8992 0.7427 

2006 0.8858 0.8984 

2007 0.8159 0.8551 

2008 0.8505 0.8783 

Average 0.8701 0.8467 

 

The average efficiency at aircraft departure, 87 percent is greater than the average efficiency at 

aircraft arrival, 84 percent. This indicates to the fact that since the level of control of aircraft 

departures is more determined and managed by the ATM at Entebbe International airport than 

aircraft arrivals, their arrival efficiencies are exogenously determined. Consequently, this would 

imply that in order to have more efficient aircraft arrivals, there is need to encourage more 

collaborative approach in air traffic flow management so as to operate more efficiently.  

 



75 
 

3.6 Time Series Analysis of Air Traffic Delay 
 
In this section, an in-depth analysis of departure and arrival delay is presented to understand the 

characteristic trend of delay, probabilities and efficiencies over time. The trends are examined 

and forecasts are determined based on derived autoregressive integrated moving averages, the 

ARIMA models.  

 

Analysis of the daily number of aircrafts that experienced delay at Entebbe Interntional Airport 

over the period 2004 through 2008 revealed a positive trend ranging from an average of 20 to 

about 85 aircrafts delayed every day. It was shown that there was a sharp rise in the number of 

aircraft delays at the beginning of the year 2007 that became a consistent over the years 2007 and 

2008. One possible explanation for this sharp rise was the increased preparatory work for the 

Commonwealth Heads Of Government Meeting (CHOGM), that took place in November, 2007 

and its effects thereafter. 

 

3.6.1 Time Series Analysis of Delay the Airport 
 
Based on the historic operational data for the airport, the proportions of departure and arrival 

delay show a positive trend over time for the study period. The implication of this is that aircraft 

operational data at the airport shows signs of increase and therefore, concerted efforts have to be 

developed to abate this. However, for purposes of this study, a forecasting system will be 

presented to attempt to predict delay, proportions of delay and the technical inefficiencies based 

on the charactersitics or behaviour of the data for this study. Figure 3.11 shows the daily delay 

proportions against time. 
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Figure 3.11 Time series plots of aircraft arrival and departure delay 
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3.6.2 Dynamics of Airport Delay Parameters with Time  
 
Here, the study aimed at the graphical analysis of the dynamics of aircraft delays at Entebbe 

International using data for the period 2004 to 2008. The variables assessed against aircraft delay 

proportions here included proportion of scheduled flights, proportion of non-scheduled flights, 

number of operations, airport visibility and airport pressure recorded as Queens Nautical Height, 

QNH.  

 

Figure 3.12 shows that the proportion of scheduled flights and the number of aircraft operations 

exhibited a positive trend over the time period per day. On the other hand, the proportion of non-

scheduled flights over time shows a slight negative trend while airport visibility and pressure 

seem to show no trend over the period 2004 to 2008.  

 

The number of aircraft operations fluctuated between 10 and 134 aircraft departures and arrivals 

per day. The highest recorded aircraft operation over the years was 134 aircraft arrivals and 

departures per day. On the other hand, the lowest aircraft operations were 10 aircraft arrivals and 

departures per day over the study period. Further, it is observed that operations at Entebbe 

International Airport were highest during the lower half of the year 2008 with an average of 87 

aircrafts.  The lowest of about 10 arrivals and departures was recorded in the upper half of the 

year 2005. 
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Figure 3.12 Airport delay parameters daily records over the years 2004 through 2008 
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The mean annual number of aircraft operations was established to follow an exponential function 

with the best fit of R-squared of 54 percent as indicated in Figure 3.13. The sharp rise of aircraft 

operations at Entebbe International Airport could be as a result of the commonwealth heads of 

government meeting that the country hosted in during November 2007 and also the compliancy 

to international civil aviation standards.  

 

 

 

Figure 3.13 Graphs for mean biannual aircraft operations and delay proportion  
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Similar analyses of the proportions of aircrafts that delay either to depart or to arrive show a 

positive trend over the years 2004 to 2008. It is shown in Figure 3.13 that proportions of aircrafts 

delay at Entebbe International Airport followed an exponential function whose best fit is R-

squared of about 70 Percent. Comparing the two plots, it is evident that aircraft operations are 

highly correlated with proportions of aircraft delays at this airport. 
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3.6.3 The ARIMA Stochastic Process of Aircraft Delay 
 

The erratic movements in the time series plot as shown in Figure 3.12 suggest modelling the data 

using the Autoregressive Integrated Moving Average, ARIMA models. Also, with the absence of 

any trend or seasonality in the time series plot, an ARIMA model again seems like a logical 

choice. 

 

A stochastic process is a statistical phenomenon that evolves in time according to probabilistic 

laws. Mathematically, it is referred to as a collection of random variables that are ordered in time 

and defined at a set of time points, which may be continuous or discrete.  

 

One important class of processes where the joint distribution of  ݔ௧భ , ௧మݔ  ௧ೖis multivariateݔ …

normal for all ݐଵ, … , ௞ݐ . The multivariate normal distribution is completely characterized by its 1st 

and 2nd order moments and hence by ߤ௧ and ߛ(௧భ,௧మ), and so it follows that the 2nd order 

stationarity implies strict stationarity for normal processes. However, ߤ and ߛఛ may not 

adequately describe stationary processes which are very ‘non-normal’.  

 

Suppose that {ܼ௧} is a purely random process with mean zero and variance ߪ௓ଶ
   

, then a process 

{ܺ௧} is said to be an autoregressive process of order p, (݌)ܴܣ if  

ܺ௧ = ଵܺ௧ିଵߙ + ⋯+ ௣ܺ௧ି௣ߙ + ܼ௧ ……………………………………………  3.12 

Where ܺ௧ is regressed on past values of ܺ௧ rather than on separate predictor variables. Examining 

the first order case with p=1, then the AR (1) equation, becomes 

ܺ௧ = ଵܺ௧ିଵߙ + ܼ௧   ……………………………………………  3.13 
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Successive substitution into the equation yields the form 

ܺ௧ = ܼ௧ + ௧ିଵܼߙ + ଶܼ௧ିଶߙ + ⋯  ……………………………………  3.14 

Given that Equation 3.14 is an infinite MA process, in order to allow convergence of the sum, 

the value of ߙ should be in the range of −1 < ߙ < +1. 

 

The possibility that AR processes may be written in MA form and vice versa means that there is 

a duality between AR and MA processes which is useful for modelling aircraft delay both at 

departure and arrival at the airport. The difference between an autoregressive process and a 

moving average process is that each value in a moving average series is a weighted average of 

the most recent random disturbances, while each value in auto-regression is a weighted average 

of the recent values of the series. 

 

Emphasis was based upon the autoregressive integrated moving averages, ARIMA modelling to 

time series following three phases: identification, estimation and diagnostic checking as 

developed by (Box & Jenkins, 1994) .  The ARIMA models combine three types of processes: 

auto regression (AR); differencing to strip off the integration (I) of the series and moving 

averages (MA). All the three processes are based on the concept of random disturbances each of 

which with its own characteristic way of responding to random disturbances.   

 

Time series analysis helped to explain the chronological occurrence of proportion of departure 

and arrival delays at Entebbe International Airport and pointed to the direction of the drift of the 

delay with respect to time. The trend can thus be positive, negative or non-existent, also known 

as stationary. 
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3.6.4 Results of the ARIMA Model for the Aircraft Delay  
 

 

Figure: 3.14: ACF and PACF before and after first differencing 
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done on the aircraft delay data. First differencing resulted into a seemingly stationary data over 

the period implying that the value of d in the ARIMA model was one because the time series 

varied about a fixed mean and constant variance and the dependence between successive 

observations do not change over time.  Other test results for to obtain the order of autoregressive 

part p and order of moving average q of the ARIMA (p,d,q) are shown in Table 3.9.  
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Table 3.9:  ARIMA modelling results 
 
 
Fit statistic ARIMA(1,1,0) ARIMA(0,1,1) ARIMA(1,1,1) 

 AR(1) MA(1) AR(1) MA(1) 

Coefficients -0.6443 -1.0000 -0.4478 -1.0000 

SE 0.0179 0.0016 0.0210 0.0016 

Variance 169.7 100.16 80.4 

Log-likelihood -7274.69 -6799.71 -6596.88 

AIC 14553 13603.43 13199.76 

 

ARIMA model was fitted to time series of proportions of aircrafts departure delay. The 

following model was found most suitable with standard errors of 0.0210 and 0.0016 for the AR1 

and MA1 of the ARIMA model respectively.  This model also referred to as a dynamic 

dependence model presupposes that the current proportions of aircraft delay at departure is a 

function of the previous day’s proportions for departure. The estimated ARIMA model for 

aircraft departure is denoted as ݀ܦ௧ − ௧ିଵ݀ܦ = ௧ିଵ݀ܦ )ଵߙܴܣ − (௧ିଶ݀ܦ  + ଵ( ݁௧ିଵߙܣܯ −

 ݁௧ିଶ) + ௧ߝ ௧  where the stochastic termߝ   is the error or deviation in the proportion of flights that 

delay to depart on a given day. It is assumed to follow a normal distribution with mean zero and 

a constant variance, that is, Norm (0, ߪଶ). The model above implies that the best forecast of the 

future aircraft departure delay is the current value since the expected value of the stochastic term 

is zero.  

Applying the available delay data, the ARIMA (1, 1, 1) model was found most fitting because it 

generated the smallest Akaike Information Criteria (AIC) value of 13199 and variance of 80 with 

a log likelihood of -6596 for N=1827 as presented Table 3.9. Thus, the model 
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௧݀ܦ − ௧ିଵ݀ܦ = ௧ିଶ݀ܦ )0.4478 − (௧ିଵ݀ܦ  − ( ݁௧ିଵ −  ݁௧ିଶ)  …….    3.17 

Where:  

 ௧  =  proportion of aircraft departure delay on current day݀ܦ

 ௧ିଵ = proportion of aircraft departure delay on the previous day݀ܦ

Or  

௧݀ܦ  = ௧ିଵ݀ܦ0.5522   + ௧ିଶ݀ܦ 0.4478   −   0.0194   …….    3.18 

 

Equation 3.18 presents a predictive ARIMA model for the proportion of aircraft departure delay 

for Entebbe International Airport. When the ARIMA prediction model was used and the 

proportions of departure delay compared with the original data, there were no significant 

differences, signifying the power of the model, see Table 3.10. The results clearly show that 

there is no significant difference between the proportions of departure delay and those predicted 

by the ARIMA (1,1,1). 

Table 3.10:  Paired two sample for means 
 

Statistic  
Prop of Dep 

Delay ARIMA(1,1,1) 

Mean 56.79129051 56.64375869 

Variance 279.0547122 253.6092203 

Observations 1824 1824 

Pearson Correlation 0.851735784 

Hypothesized Mean Difference 0 

df 1823 

t Stat 0.706697889 

P(T<=t) one-tail 0.239922278 

t Critical one-tail 1.645689912 

P(T<=t) two-tail 0.479844556 

t Critical two-tail 1.961266135 
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A plot of time series analysis diagnostics, Figure 3.15 for departure delay shows that 

standardized residuals almost cancel at zero as the mean, thus confirming a good fit of the 

ARIMA model presented. The other plots of the autoregressive cumulative function of the 

residuals and the p-values for the Ljung-Box statistic confirmed the ARIMA (1,1,1) model fit for 

the aircraft departure delays at Entebbe International Airport.  

 

Figure 3.15  Time series diagnostics for the proportion of aircraft delay 
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Similar ARIMA models were developed for the aircraft arrival delay, probability of departure 

delay, probability of arrival delay, technical efficiency of departure and arrival of aircrafts at 

Entebbe International Airport. The results are summarised in Table 3.11  

 

Table 3.11: ARIMA models for Aircraft Arrival delay, Probabilities of departure and 
arrival delay and Inefficiencies of at departure and arrival of aircrafts 

 
Fit 

Statistic 

PropArrDelay 

ARIMA(1,1,1) 

ProbDepDelay 

ARIMA(1,1,1) 

ProbArrDelay 

ARIMA(1,1,1) 

TIneffDep 

ARIMA(1,1,1) 

TIneffArr 

ARIMA(1,1,1) 

 AR1 MA1 AR1 MA1 AR1 MA1 AR1 MA1 AR1 MA1 

Coeffs. -0.5084 -1.0000 -0.4579 -1.0000 -0.5366 -1.0000 -0.4561 -1.0000 -0.509 -1.0000 

SE  0.0202 0.0016 0.0208 0.0016 0.0198 0.0016 0.0218 0.0018 0.021 0.0019 

Variance  96.95 0.02691 0.03122 0.008674 0.01148 

Log-

Likelihood -6767.86 704.96 569.35 1591.77 1354.82 

AIC 13541.72 -1403.91 -1132.71 -3177.53 -2703.65 
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CHAPTER FOUR 
 

STOCHASTIC OPTIMISATION MODELS 
 
 
This chapter presents stochastic optimization models for air traffic management based on the 

derivation of the utility functions of an airport that relate to the probabilities of delay and 

technical efficiencies on any given day as derived from Chapter Three. Two models based on 

departure and arrival delays are thus derived to assess the utility levels of an airport. The third 

model is an aggregate of the two primary models which formulate the overall combined daily 

utility. A maximum utility value is then contingent upon the computed daily utilities whereby the 

values of the delay probability and inefficiency are derived from the interaction term. 

Experimental perturbations are then carried out on the models to access their sensitivities 

towards different values of model inputs.  

 

4.1 Aircraft Delay Stochastic Optimisation Model 
 

Aircraft delay stochastic optimisation models were developed based on the number of aircrafts 

that delay to depart and arrive respectively. It was established that total delay affects utility with 

a seemingly Exponential or Weibull probability density functions (pdfs). Although, none of the 

two distributions perfectly fitted the delay data, when the inefficiency term was introduced, the 

exponential probability density function emerged a better fit. It should be realised that obtaining 

airport utility guides air traffic flow management in not only determining the time dependant 

level of operations for the airport, but also acts as a strategic planning tool for the airport whose 

inputs and outputs are stochastic and vary with time. 
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4.1.1 Model Notation 
 

The following notation is assumed in the development of stochastic optimization models. We let   

Φ =  {1,2, be a set of finite flights and Γ {ܨ… =  {1,2, …ܶ + 1} to be a set of finite time periods. 

Given that flight ݂߳ Φ then ݌݁ܦ௙ ߳ Γ and ݎݎܣ௙߳ Γ.  We let ߣ ≥ 1 where ߣ is the unit cost for 

airborne and ground delays assumed for all flights. We then assumed Θ is a set of utility 

scenarios where ݍ ߳ Θ and ௤ܲ  is the unconditional probability of occurrence of scenario ݍ ߳ Θ. 

Hence, let the utility scenario be a year ௜ܶ, then the unconditional probability of the proportion of 

aircraft on time performance is ்݌೔. In our case, therefore, there are five scenarios, thus Θ =

{ ଵܶ, ଶܶ, ଷܶ, ସܶ, ହܶ} with probabilities pΘ = ݌} భ், ݌ మ், ݌ య் , ݌ ర் , ݌ ఱ்} 

 

4.1.2 Decision Variables 
 

Decision variables are important conjugates in evaluating a scenario, thereby leading to a near 

acceptable and reliable decision. To access whether a given aircraft delayed, we considered a 

given time period within which it was scheduled to either arrive or depart. Hence, in a particular 

time period, a flight arrived or did not arrive. Thus, the number of flights in a given time period 

for a given scenario can be represented as: 

௙ܺ,௧
௤ = ቄ1 ݂݅ ݂݈݅݃ℎݐ ݕܾ ݁ݒ݅ݎݎܽ ݋ݐ ݈݀݁݊݊ܽ݌ ݏ݅ ݂ ݐℎ݁ ݁݊݀ ݍ ݋݅ݎܽ݊݁ܿݏ ݎ݁݀݊ݑ ݐ ݀݋݅ݎ݁݌ ݁݉݅ݐ ݂݋

0 otherwise
 

   ……………………………………………………………… 4.1 

Where; 

q߳Θ 

݂߳Φ 

,௙ݎݎܣ൛߳ݐ … , ܶ + 1ൟ 
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4.1.3 Auxiliary Variables 
 

Below are some auxiliary variables that were used in model formulation on the assumption that 

the system, which in this study is the airport, is empty at the beginning of the planning period 

and that all flights arrive by the end of period T+1. 

௙ܻ,௧
௤ = ቊ ௙ܺ,௧ା஺௥௥೑ି஽௘௣೑  

௤ ݐ  ݂݅ + ௙ݎݎܣ ௙݌݁ܦ− ≤ ܶ
1 otherwise

 ………………………………… 4.2 

Where; 

q߳Θ 

݂߳Φ 

,௙݌݁ܦ൛߳ݐ … , ܶ + 1ൟ 

௧ܹ
௤  is number of aircrafts in the arrival queue at the end of time period t under scenario q 

 

4.2 Stochastic Optimisation Models  
 
The main assumption made here is that collaborative decisions are made between Air Traffic 

Control (ATC), the Airline Operational Control (AOC), and affected centres that include the 

originating and destination airports. The flow control options unavoidably result in either some 

form of departure delay or arrival delay creating two major flow control options that is, ground 

delay programme, GDP (here after referred to as departure delay) or air holding programme, 

AHP or simply the aircraft airborne delay (here after referred to as arrival delay). To understand 

the nature of the distributions of computed probabilities under Section 3.4, Figure 4.1 was 

plotted. The figure shows the near fit of the Exponential or Weibull probability density functions. 

However, further analysis revealed that the exponential distribution function provided a better fit 

for the data in this study. Thus, the resulting general utility function is given 
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as ܷ(ݕ݈ܽ݁ܦܾ݋ݎ݌, (ݕ݂݂ܿ݊݁݅ܿ݅݁݊ܫܶ = ݁ି௣௥௢௕஽௘௟௔௬∗்ூ௡௘௙௙௜௖௜௘௡௖௬ . It should be remembered that 

the utility parameters are both outputs of the models presented in Chapter Three.  

 

 

Figure 4.1 Estimating the utility function of aircrafts at the Airport 
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single airport with multiple arrivals and departures as summarised in Figure 4.2. On arrival at the 

airport, the set of flights ܨ =  { ଵ݂, ଶ݂, . . , ே݂} are forced into a queuing system since a single 

runway is under use. Given the inconvenience at the airport, these flights may not land as 

scheduled, hence may incur some delay in air as the situation on the ground normalizes. 

However, the airborne delay could also have been instituted many miles away from the 
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destination airport. Distances from the airport at which the delay is instituted may vary from a 

few kilometres to a maximum of the equivalence of the distance between the departure and 

arrival airports. Similarly, some flights on the ground may not depart because of the unbearable 

circumstances either at the departure airport or at the arrival airport or en-route. Among the many 

questions that arise is how delay decisions can be made to minimise total utility attributed to the 

airport. Subsequently, which proportions of aircraft delay would lead to optimum total costs as 

well as optimum airport utility given the available circumstance?  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Multiple arrivals and departures of aircrafts at the Airport 
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lightening, bird hazards, VIP movements, political and social causes which are said to affect the 

proportions of on time aircraft departures and arrivals at Entebbe International Airport.   

 

In the development of the models, two assumptions were made; a single airport and those flights 

are aggregated by scheduled arrivals and departures. The study sought to develop an objective 

functions which minimize the expected proportions of departure and arrival delays respectively;  

Minimize {E [departure delay] and E [arrival delay]}   ........................... 4.3 

Subsequently, equation 4.3 was restated using the concept of utility in order to measure 

efficiency of aircraft flight propagation that may have many uses among which is determination 

of  efficiencies of airlines and even airports using derived utilities as a measure of performance. 

 

Utility is a measure of relative satisfaction. It maps a set of alternatives onto a single number also 

referred to as utility. Thus, we can say Utility (option1) ≥ Utility (option2) if the decision maker 

prefers option1 to option2 or is indifferent between the two options. A rational decision maker 

would select the option with the highest utility. Utilities are individual, subjective and need to be 

obtained from the decision makers. A utility function therefore summarizes the multiple criteria 

involved in the decision making. 

 

The utility function is defined as an ordinal, including both ordering and ranking concept. In this 

study, utility of an airport is measured by how effective aircrafts accomplish the assigned tasks in 

a given day. The fundamental ingredient in determining the airport’s utility is the number of 

aircrafts that depart and arrive on time. Delays of aircrafts, however, reduce the utility associated 

to a particular airport where the delay is recorded. An aircraft delay is measured by computing 

the difference between the actual and expected flight operational time. In this study, the number 
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of aircrafts that delayed per day was computed based on whether the scheduled time of departure 

or arrival was exceeded. On the other hand, total aircrafts and the number of aircrafts arriving 

and departing per day were also computed.  

 

It is the duty of the airline guided by air traffic management to programme the movement of an 

aircraft to and from a given airport. Once the programmes are drawn by the ATM, it is the 

mandate of the airline to supervise its crew so that they strictly abide by the aircraft programme 

for the convenience and safety precautions plus smooth flow of aircrafts in the sky. Any 

deviation from the set programme is tantamount to an inconvenience to the other flights as well. 

Originally, the inconvenience is reflected in cumulative delays by aircrafts, but consequently 

translated into proportional financial losses. The airport’s daily historical data for the years 2004 

through 2008 were used to fit a suitable probability density function which subsequently 

determined the daily utility of aircrafts at Entebbe International Airport. The fitting of the data 

was done in order to characterise the arithmetic mean delay so as not to grossly underestimate it. 

Comparisons were made with over sixty existing probability density functions including 

Exponential, Normal, Weibull and Logistic probability density functions. After analysis of best 

fits, Exponential probability density function was found very appropriate. However, none clearly 

fitted the data. To determine the suitable fit, some considerations were made, including, what 

effect a characterisation of the delay data would have on the decision or action taken by the air 

traffic management. Furthermore, the distribution selected would act well as a reference 

distribution, have a basis in theory and empirical experience and would be used for further 

analysis and decision making. 
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Airport utility decreases with the increase in the proportion of aircrafts that delay their operations 

at the airport. Thus, based on Figure 4.1, the study presents the utility functions for aircrafts at 

departure in Equation 4.4 and at arrival Equation 4.5 respectively.  

 Ud୲ = [eି(୮ୢ౪)∗(୍ୢ౪)] ..............................................    4.4 

Where; 

Ud୲  - the utility of aircrafts during departure at an airport on a given day 

pd୲  - the stochastic element that an aircraft departs on time on a given day  

Id୲  - the technical inefficiency of an airport on a given day  

 

Ua୲ = [eି஛∗(୔ୟ౪)∗(୍ୟ౪)] ..............................................    4.5 

Where; 

Ua୲  - the utility of aircrafts during arrival at an airport on a given day 

Pa୲  - the stochastic element that an aircraft will arrive on time on a given day  

Ia୲  - the technical inefficiency of an airport on a given day 

λ - the air to ground cost ratio 

 

Thus, the output of a utility function, which are numbers in this case represent utility levels of 

the airport in regards to air traffic flow operations. The airport utilities derived in this study are 

an aggregation of a day’s air traffic flow performance. Therefore, for the case of the utility 

functions in Equation 4.4 and Equation 4.5, the utility value at departure and arrival is a 

maximum when the proportion of aircrafts which experience delay at departure or arrival is zero. 

That is, all aircrafts depart at their scheduled times. At that point we have 100 percent aircraft 

flight utility. However, utility reduces as the proportions of aircraft delay increase, hence the 
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more the delay, the less will the utility of a given airport be on a given day for either case.  Data 

for the case study were used in the models to plot utilities against years; the plots fitted the 

anticipated functions as shown in Figure 4.3. 

 

Figure 4.3 Results of the estimated utility functions for departure and arrival  
 

To compute total utility over a period T, the summations of Equations 4.4 and 4.5 are obtained to 

represent the total airport utility due to air traffic flow as indicated in Equations 4.6 and 4.7 

respectively. Equation 4.6 shows the total airport utility due to air traffic flow over period T for 

departing aircrafts, while Equation 4.7 shows the total airport utility due to air traffic flow over 

period T for arriving aircrafts 
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∑ Ud୲்
௧ୀଵ = ∑ [eି(୮ୢ౪)∗(୍ୢ౪)]்

௧ୀଵ   .................................   4.6 

∑ Ua୲்
௧ୀଵ = ∑ [eି஛∗(୔ୟ౪)∗(୍ୟ౪)]்

௧ୀଵ   .................................   4.7 

 

Furthermore, if total utility is desired for a given day while considering both departures and 

arrivals, the total utility may be computed by taking the summation of Equations 4.6 and 4.7 to 

obtain total overall utility in period T as shown in Equation 4.8 and subsequently Equation 4.9. 

 

∑ Ud୲்
௧ୀଵ + ∑ Ua୲்

௧ୀଵ = ∑ eି(୮ୢ౪)∗(୍ୢ౪) +்
௧ୀଵ ∑ eି஛∗(୮ୟ౪)∗(୍ୟ౪)்

௧ୀଵ    .... 4.9 

 

Hence, we can develop three stochastic optimisation models for maximisation of utilities at 

aircraft departure, aircraft arrival and combined utility at both departure and arrival over period 

T. Thus, to maximise the utilities over a time period; 

max்{ Ud୲ }      ……………………….  4.10 

max்{ Ua୲ }      ……………………….  4.11 

max்{ Ud୲ + Ua୲ }     ……………………….  4.12 

 

One important decision taken is that some flights have their arrival and departure times re-

scheduled and as such delay is instituted either during aircraft arrival or at aircraft departure. 

Probability of occurrence of aircraft on-time operations on a certain day is computed using the 

logistic model post-analysis having while taking care of all the explanatory variables as indicated 

in Chapter Three. The stochastic optimisation models 4.10, 4.11 and 4.12 meet the following 

assumptions which are duly considered. 
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i) The number of aircrafts rescheduled is greater or equal to one and it is cumulative over a 

specific time period. 

∑ ௜ܺ௧ =  ݊௜ ்
௧ୀଵ   ...........................................................    4.13 

Where; 

  t = 1, 2... T 

ii) The number of aircrafts that delay to arrive or depart is less or equal to the number 

scheduled under a given scenario. That is the number of aircrafts that delay at any time 

does not in any way exceed the number scheduled. 

∑ ௜ܺ௧ ௤௜ܯ ≥
்
௧ୀଵ  ...........................................................    4.14 

Where; 

q = 1, 2… Q 

 

iii) Every aircraft scheduled to land actually lands 

௜ܺ௧ =  ∑ ௤௜௧ߔ
்
௧ୀ௜  ...........................................................    4.15 

 Where; 

  t = 1, 2… T 

  1 ≤ t ≤ T 

  q = 1, 2… Q 

 

iv) The number of aircrafts rescheduled and actually landing is positive 

௜ܺ௧  ≥ 0   ...........................................................    4.16 

 Where; 

  t = 1, 2… T 

  1 ≤ j ≤ t 

  q = 1, 2… Q 
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Three major constraints of the stochastic optimisation models are identified; 

 

i) The probabilities of departure and arrival delay are computed from the logistic regression 

model that takes into account all the necessary explanatory variables. Although the model 

has been tested and found reliable in predicting the conditional probabilities, the 

completeness of the explanatory variables is left to the researcher to determine. Thus, the 

product of the interaction terms is greater than zero. Conversely, the probabilities of 

delay at departure and arrival are greater or equal to zero, but less or equal to one. 

 

ii) On the other hand, the technical inefficiency levels for both aircraft departure and aircraft 

arrivals are computed from the stochastic frontier models. These models are tested, 

current and also found to perform best when all the explanatory variables are included. 

The determination of the levels of inefficiencies is based on the error terms and their 

distributions. Thus, the inefficiency values at departure and arrival are greater or equal to 

zero and less or equal to one. 

 
iii) However, the fact that the stochastic optimisation models depend on explanatory 

variables implies that they will not be applicable wherever there is no data to generate 

input into the model. The interaction terms in the utility function as given in the 

exponential functions are computed for those values occurring at the same time, t. 
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4.3 Stochastic Optimization Model Algorithm (SOMA) 
 

GENERAL ALGORITHM: STOCHASTIC OPTIMIZATION MODEL ALGORITHM 
 // INPUTS   from Manifest database 

 // Variables: t => day;  T => max number of years q => scenarios  

Step 1.1 Obtain the aircraft manifest database // Information about aircrafts  

Step 1.2 Establish the day’s flight schedules of aircrafts at the airport, both departures  

  and arrivals 

Step 2.0 Derive the number of flights that delay daily: 

i) The number of flights that delay to depart  

ii) The number of flights that delay to arrive 

 // INITIAL PROCESSING    

Step 3.0 From the arrival data, compute the deviation of expected time of arrival (ETA)  

  from the actual time of arrival (ATA), 

Step 3.1 For each aircraft, obtain Aircraft Arrival Deviation,   

   AAD = ATA – ETA 

Step 3.2 Let the total number of daily scheduled arrivals be TA   

Step 4.0 From the departure data, compute the deviation of expected time of departure  

  (ETD) from the actual time of departure (ATD), 

Step 4.1 For each aircraft, obtain Aircraft Departure Deviation,   

   ADD = ATD – ETD 

Step 4.2 Let the total number of daily scheduled departures be TD 
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// COMPUTING THE NUMBER OF AIRCRAFTS THAT DELAY DAILY  

Step 5.0 Using AAD from step 3.1 above 

  For each day 

  { 

   If  AAD > 0 

    Then daily total arrival aircraft delay, 

    TAAD =  ∑ AAD୧
୲
୧ୀଵ   

    Return TAAD 

   Else 

    Return 0 

  } 

Step 6.0 Using ADD from step 4.1 above 

  For each day 

  { 

   If  ADD > 0 

    Then daily total aircraft departure delay, 

    TADD =  ∑ ADD୧
୲
୧ୀଵ   

    Return TADD 

   Else 

    Return 0 

  } 
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// COMPUTING THE DAILY PROPORTION OF DEPARTURES AND ARRIVALS 

Step 7.0 Obtain the proportion of the daily arrival delay 

  Using TAAD from step 5.0 and TA from step 3.2 

  For each day 

  { 

   If  t > 0 

    Then daily proportion of aircraft arrival delay, 

    DAAD =  ୘୅୅ୈ
୘୅

  

    Return DAAD 

   Else 

    Return 0 

  } 

Step 7.1 Obtain the proportion of the daily departure delay 

  Using TAAD from step 6.0 and TA from step 4.2 

  For each day 

  { 

   If  t > 0 

    Then daily proportion of aircraft departure delay, 

    DADD =  ୘୅ୈୈ
୘ୈ

  

    Return DADD 

   Else 

    Return 0 

  } 
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// ESTABLISH DISTRIBUTION DENSITY FUNCTION FOR THEDEPARTURE DELAY, 

ARRIVAL DELAY AND AIRPORT UTILITY  

Step 8.0 Using the Kolmogorov Smirnov goodness of fit statistic to rank the known 

probability density functions to the data, it was found that the proportions of delay 

tended to follow the Exponential probability density functions.  

  Thus, the proportion of daily departure delay follows  

   ADD୲  ~ eିୈ୅ୈୈ 

  Similarly, the proportion of daily arrival delay follows  

   AAD୲  ~ eିୈ୅୅ୈ 

The combined proportions also followed the same probability density functions. 

Thus, the derived airport utilities followed an exponential distribution function as 

will be shown in subsequent sections.  

 

// ESTABLISH THE STOCHASTIC OPTIMIZATION MODEL  

Step 9.0 The airport utility will take into consideration, other stochastic variables such as 

the probability derived from the post-analysis of the logistic model at a level with 

the greatest significant number of variables and also the technical inefficiency 

term derived from the stochastic frontier model. Thus, for the aircraft departure, 

the utility function was established to follow the probability density function for 

the interaction term of the probability of delay at aircraft departure and the 

technical inefficiency term; 

  U(probDd,DtechInefϐiciency)୲ =  ݁ି(௉௥௢௕஽ௗ೟∗஽௧௘௖௛ூ௡௘௙௙௜௘௡௖௬೟) 
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While the utility for the aircraft arrival was similarly established to follow the 

probability density function for the interaction term of the probability of aircraft 

arrival delay and the inefficiency term at that particular time; 

  U(probAd, AtechInefϐiciency)୲ =  ݁ି(ఒ∗௉௥௢௕஺ௗ೟∗஺௧௘௖௛ூ௡௘௙௙௜௘௡௖௬೟) 

 

And the combined utility will constitute aggregated utilities at departure and 

arrival respectively, thus; 

  U(probAd, probDd, AtechInefϐiciency, DtechInefϐiciency)୲ 

 

Step 9.1 Hence, the stochastic optimisation models imply maximising airport utility over a 

probabilistic time period T, thus; 

  At aircraft departure, we optimise the utility function over time period T; 

  max் U(probDd,DtechInefϐiciency)୲  

 

  While at aircraft arrival, we optimise the utility function over time period T; 

  max் U(probAd, AtechInefϐiciency)୲  

 

  The aggregated utility optimisation considers all the parameters as; 

  max் U(probAd, probDd, AtechInefϐiciency, DtechInefϐiciency)୲  
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4.4 Results Obtained from the Models Using Data at Entebbe International 

Airport 
 
 
Table 4.1 represents output of the models at departure and arrival. It is evident that aircraft 

utilities are lower at departure than during aircraft arrival at Entebbe International Airport. 

Therefore on average the utility of the airport during aircraft departures is 88 percent and 90 

percent during aircraft arrivals at the airport. It is also noted that the utilities at departure and 

arrival of aircrafts at EIA are about the same. Hence, one would conclude that there is no 

significant difference in handling of aircrafts during departure and arrival at this airport.  

 

Table 4.1: Utilities generated from the Model using 60 percent threshold level for 
Entebbe International Airport  

 
Statistic Utility at Departure Utility at Arrival 

First quartile 0.8663 0.8764 

Third quartile 0.9714 0.9713 

Mean Utility  0.8838 0.9065 

 

Model flexibility enabled computations to be done on an annual basis for the study period 2004 

through 2008. To compute the utility values for each year, only parameter values for the given 

year were applied. In both cases of airport departures and arrivals, it is observed that there was 

an improvement in utility over the period 2004 through 2008 probably because of a related 

improvement of resources, both human and otherwise at EIA. It is further confirmed that airport 

utility, although not significantly different at aircraft departure and arrivals, is higher at arrival 
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than at departure, details are shown in Table 4.2. One plausible explanation would be that the 

weather and other phenomena en-route and at this airport are on average suitable with a few 

perturbations that would not severely deter arrivals of aircrafts.  

Table 4.2: Airport annual utility for the period 
 

Year Airport Departure Utility Airport Arrival Utility 

2004 0.8932 0.9508 

2005 0.8204 0.8732 

2006 0.9444 0.8983 

2007 0.9706 0.9871 

2008 0.9878 0.9978 

Average utility 0.9233 0.9414 

 
 
 

 
4.5 Design of Experiments for Sensitivity Analysis of the Models 
 

To evaluate the performance of the model, five experiments were designed to test the resilience 

of the stochastic optimisation models. Specific experiments are designed to attempt test the 

performance of the models by using different data sets. In all the experiments, the maximum 

utility values were generated from the model based on the data for the study and the simulated 

data to gauge the resilience of the models. 
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4.2.3.1 Design of experiment one: varying the daily probabilities to lower 

departures and higher arrival values 

When data for Entebbe International Airport for ground and airborne delays are applied to the 

stochastic optimization models, its sensitivity was tested to establish how the model output varies 

over the years. It was also established how the changes in the model parameters would affect the 

ranking of utilities over the period. 

 

Final utility values for the different years indicate the performance accrued due aircraft 

performance in the given year. The following algorithm was applied. 

 

Algorithm 4.2.3.1:           Simulation Experimental Design One 

Step 0 Begin 

Step 1 Apply the proportion of daily delay during departure at Entebbe International Airport 

Step 2 Apply the proportion of daily delay during arrival at Entebbe International Airport 

Step 3 Simulate lower and higher values for the probability of daily delay for aircrafts at  

           departure and arrival.  Let these values be in the range {0.1:0.4} and {0.6:0.9} 

Step 4 Simulate lower and higher values for the computed probability of daily delay for aircrafts at 

           departure and arrival. Let these values be in the range {0.1:0.4} and {0.6:0.9} 

Step 5 Compare the derived utilities 

Step 6 Test for differences with the normal case at Entebbe International Airport 

Step 7 Do  + plots 

Step 8 End 
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Table 4.3: Utilities generated using simulated probabilities 
 

Statistic Utility at Departure with  

lower probability values  

Utility at Arrival with  

lower probability values 

First quartile 0.9799 0.9663 

Third quartile 0.9919 0.9842 

Mean Utility  0.9814 0.9715 

 higher probability values higher probability values 

First quartile 0.8854 0.8140 

Third quartile 0.9521 0.9090 

Mean Utility  0.8985 0.8457 

 
 
 
Table 4.3 shows that lower probabilities of delay at departure and arrival of aircrafts are 

inversely related to airport utilities. Conversely, the airport’s utility will be high when aircrafts’ 

delay probabilities at departure and arrival during a specific time interval are low. Given the 

scenario in Algorithm 4.2.3.1, the performance of the airport over the study period is as shown 

Figure 4.4.  

 
 
 



109 
 

 

Figure 4.4:  Aircraft Utility for departure and arrival with high probability of delay 
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4.2.3.2 Design of experiment two: varying the daily inefficiency scores to lower and 

higher values for both aircraft departures and arrivals 

When data for Entebbe International Airport for ground and arrival delays are applied to the 

stochastic optimization models, its sensitivity was tested to establish how the model output 

varied over the years. It also established how the changes in the model parameters would affect 

the ranking of utilities over the period. 

 

Final utility values for the different years indicate the performance accrued due aircraft 

performance in the given period of time. The following algorithm was applied. 

 

Algorithm 4.2.3.2:           Simulation Experimental Design Two 

Step 0 Begin 

Step 1 Apply the proportion of daily delay during departure at Entebbe International Airport 

Step 2 Apply the proportion of daily delay during arrival at Entebbe International Airport 

Step 3 Simulate lower and higher values of airport efficiency at aircraft departure   

Let these values be in the range {0.1:0.4} and {0.6:0.9} 

Step 4 Simulate lower and higher values of airport efficiency at aircraft arrival 

Let these values be in the range {0.1:0.4} and {0.6:0.9} 

Step 5 Compare the derived utilities 

Step 6 Test for differences  

Step 7 Do  + plots 

Step 8 End 
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Table 4.4: Utilities generated using simulated inefficiency data 
 
 
Statistic Utility at Departure with lower 

efficiency values  

Utility at Arrival with  

lower efficiency values 

First quartile 0.4737 0.6080 

Third quartile 0.8543 0.8897 

Mean Utility  0.6687 0.7378 

 higher efficiency values higher efficiency values 

First quartile 0.7174 0.8016 

Third quartile 0.9324 0.9494 

Mean Utility  0.8267 0.8687 

 
When the airport operates more efficiently, its overall average utilities are also established to be 

higher. The efficiency here means abiding by the scheduled times of operations. It should be 

noted that sometimes, the utility level is determined by factors beyond management of the air 

traffic controllers. Whereas they would wish to have 100 percent utility performance at the 

airport, factors such as suitability of weather at the departure airports, during airborne and even 

at the airport itself may not be suitable for aircrafts to land or to takeoff.  
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Figure 4.5:  Airport Utility with high inefficiency for both departures and arrivals of 
aircrafts 
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4.2.3.3 Design of experiment three: varying the cost ratios between 1.0 and 2.0 

while using EIA arrival efficiency and higher values for aircraft arrivals 

efficiency 

When data for Entebbe International Airport for ground and arrival delays are applied to the 

stochastic optimization models, its sensitivity was also tested to establish how the model output 

varied over the years. It also established how the changes in the model parameters would affect 

the ranking of utilities over the period. 

 

Final utility values for the different years indicate the performance accrued due aircraft 

performance in the given period of time. The following algorithm was applied. 

 

Algorithm 4.2.3.3:           Simulation Experimental Design Three 

Step 0 Begin 

Step 1 Apply the proportion of daily delay during arrival at Entebbe International Airport 

Step 2 Use data for Entebbe International Airport 

Step 3 Simulate high values of airport efficiency during aircraft arrival.  

           Let the values be in the range {0.6:0.9} 

Step 4 Simulate values of the cost ratio in the range {1.0: 2.0, 0.1} 

Step 5 Compare the derived utilities 

Step 6 Do  + plots 

Step 7 End 
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Table 4.6: Utilities generated using simulated air to ground cost ratio using data for 
EIA and when the efficiency level is high 

 
 Entebbe International Airport 

arrival efficiency data 

Simulated arrival efficiency 

data {0.6:0.9, 0.1} 

Lambda 

(Air to ground cost ratio) 

Mean  

Utility 

Mean  

Utility 

1.0 0.9065 0.8687 

1.1 0.8982 0.8569 

1.2  0.8901 0.8455 

1.3 0.8821 0.8342 

1.4 0.8743 0.8232 

1.5 0.8667 0.8124 

1.6 0.8592 0.8018 

1.7 0.8518 0.7914 

1.8 0.8446 0.7812 

1.9 0.8375 0.7713 

2.0 0.8306 0.7615 
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Figure 4.6:  Entebbe International Airport Utility and a simulated Airport Utility with 
high efficiency levels for aircraft arrivals at varying cost ratios 
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CHAPTER FIVE 
DISCUSSIONS OF THE AIR TRAFFIC FLOW MODELS 

 

In this chapter, a discussion of the findings is made. The discussion is premised on the results of 

the models based on the study data and some data simulations. Firstly, the discussion is focussed 

on the statistical models for air traffic flow management. The statistical models include logistic 

models, stochastic frontier models and the ARIMA (p, d, q) models. Further discussions are 

derived from the stochastic optimisation models as presented in Chapter Four and the models’ 

sensitivity analysis. The significance of stochastic against deterministic approach is also explored 

in an attempt to confirm that the best feasible future strategies of air traffic flow management. 

Lastly, a discussion about decision making in the management of air traffic flow, management 

information systems, and air traffic flow efficiency computations is presented. 

 

6.2 Statistical Models for Air Traffic Flow Management 
 
Logistic model dynamics for aircraft departure and arrival delays show that more explanatory 

variables, eight in number are significant for explaining the proportion of aircraft delay at 

departure. Only five explanatory variables were tested significant in explaining the proportion of 

aircraft arrival delay at 0.05 and 0.01 levels of significance. At these levels, the AIC for 

departure and arrival delay determinants were 731.5 and 1732.6 respectively. This confirms the 

need to examine other factors as well if one is to understand the causes of aircraft departure and 

arrival delays at any airport during aircraft departure and arrival respectively. The possible 

factors to consider are those at the departure or arrival airports for aircrafts arriving and 

departing respectively and the suitability of en-route factors. However, in both cases of aircraft 
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departure and arrivals, it was established that the non-scheduled type of flights have an effect on 

the timeliness of aircraft departures and arrivals as demonstrated in Table 3.2.  

 

Thus, the philosophy behind these findings is that controlling the non-scheduled type of flights 

improves the timeliness of aircraft departures and arrivals. This philosophy has been found to 

hold true as shown in Table 3.2, where the number of chartered flights, number of freighters and 

the number of other non-commercial flights were significantly explaining the proportions of 

departure delay. Similarly, the number of freighters and other non-commercial flights 

significantly explained the proportions of arrival delay. The extreme solution would be to 

eliminate the non-scheduled type of flights, but this may not apply since, there is a growing 

demand for chartered flights, freighters, and non-scheduled flights. The optimal solution would 

then be to submit all non-scheduled flight’s programmes in sufficiently ample time to warrant 

that their schedules do not interfere with other scheduled flights. 

 

Analysis of the probabilities of delay at different threshold levels of delay revealed a seemingly 

obvious outcome that raising the threshold level generates lower values of the probabilities of 

delay for either departure or arrival. The logistic model would not perform well with very low 

threshold levels below a 50 percent mark because at those levels there were fewer counts of 

delay occurrences.  Thus for this study, a threshold yielding more number of explanatory 

variables in the model was plausible and this occurred at a 60 percent delay threshold level for 

both aircraft departures and arrivals respectively. Therefore, considering data over the study 

period, at 60 percent threshold level, the probabilities of aircraft departure delay has been 

reducing over the time period 2004 through 2008. This implies that the air traffic flow 

management division at EIA has been empowered to sustainably combat aircraft departure 
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delays. Some of the measures mentioned during their interaction with the researcher included the 

installation of the radar system and adoption of the automated aircraft plan scheduling system. A 

similar observation and explanation holds for the variation of arrival delay probabilities for the 

delay threshold level of 60 percent as shown in Figure 3.6. 

 

When probabilities are computed separately for each year over the period under study, a similar 

negative trend was established for both departure and arrival delays. Interestingly, treating each 

year separately confirmed the same trend over the period with decreasing departure and arrival 

delays as shown in Table 3.5. It is also clear that EIA benefitted from CHOGM preparations by 

attracting some investments to refurbish the only international airport in the country. 

 

Stochastic frontier models in this study revealed that visibility plays a vital role in determining 

aircraft departure and arrival delays. The two frontier models established a proxy to the 

measurement of efficiency of air traffic flow of 81 and 74 percent for aircraft departure and 

arrival respectively whose error terms are estimated to follow the half-normal that provided 

better AIC test values. The estimates presented in Tables 3.6 and Table 3.7 used time invariant, 

hence bearing the coefficient of zero.   When efficiencies were disaggregated over time, it was 

established that they fluctuated about 80 percent for both departures and arrivals. Thus, one 

would conclude that timeliness at EIA is at an average of 80 percent resulting into an average 

inefficiency of 20 percent as shown in Table 3.8. This could be attributed to factors such as less 

automation and also the fact that ATM decisions are not based on sufficiently provided statistical 

information, a basis which guaranteed this study to improve aircraft operation timeliness. 
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Time series analysis established that although there is no trend of airport visibility and pressure, 

these parameters are significant for air traffic management to take appropriate decisions for air 

traffic flow in and out of the Entebbe International Airport. The other parameters showed some 

trend as in Figure 3.12. The ARIMA (p, d, q) model was found suitable for forecasting aircraft 

proportions of departure and arrival delays and established to follow ARIMA (1, 1, 1) for all 

cases as shown in Table 3.9 and Table 3.10. The correlation between the observed and the 

forecast values for all cases forecast by the ARIMA (1, 1, 1) were all positive and strong, 

signifying a reliable fit for the time series.  

  

6.2 Air Traffic Flow Management Stochastic Optimization Models 
 

The stochastic optimisation models presented aim at pointing towards possible means and ways 

of optimising the utility for an airport. The models applied the approach for utility of an airport. 

Here, the study established that utility of an airport follows some distribution function similar the 

exponential density functions with the interaction term consisting of the probability of delay and 

the inefficiency level. It should be remembered that the probabilities of delay are a by-product of 

the logistic model and values are obtained on a daily basis over a period of five years. Similarly, 

the airport inefficiency terms are computed from the stochastic frontier model and values 

obtained on a daily basis for the scope of study period. These pre-stochastic optimisation model 

computations are derived for both aircraft departures and arrivals respectively. Hence, the two 

models are derived from aircraft departure and arrival. A close examination of the utility 

functions reveals that a unit increase in delay decreases the airport’s utility level. The models use 

utility functions and the theory of scenarios that apply time-dependence to a set {T1, T2.., TQ} 

whose probabilities are {TP1, TP2 ... TPQ} respectively. In order to obtain an optimal utility, we 
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compute the maximum utility in a set of utilities over some time period that represents a 

scenario. Time period determine the necessary variation in airport utilities because even the 

stochastic determinants of aircraft delay vary over time. We then find the values from the 

interaction term that maximise the airport utility.  

 

However, it should be noted that the effect of airport utility by the interaction term of probability 

of aircraft delays and airport inefficiency vary between departure and arrival by the ratio of 

arrival delay costs to departure delay costs. These costs vary based on the scenario and both 

practice and theory suggest that airborne delay costs are usually more than ground delay; hence 

the relationship ߣ = ஼ೌ
஼೒
≥ 1 is used in the models to enhance their applicability. The modelling 

approach emphasizes the need to have minimal aircraft delays so as to increase airport utility. 

The model used the approach of optimisation of aircraft utility which in turn relies of the 

magnitude of the interaction between probability of delay and inefficiency level, implying that 

when the interaction term is zero units then the airport utilities would be at maximum 100 

percent because all aircrafts will be landing and departing on time as expected. Conversely, when 

the interaction term is nearer one (unity), the airport utility would be at the least minimum level 

of about 36 percent. The study assumed that other explanatory factors than aircraft delays are 

assumed to contribute about 36 percent towards the airport utility. The approach to stochastic 

optimisation presented in this study plays many air traffic flow management roles such as 

providing information for reliable air traffic flow management, providing a benchmark for 

strategic planning for air traffic flow management and presents as a reliable tool for monitoring 

the performance of different aircrafts within an airline, airlines within an airport and airports 
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within a region. If applied, these models can go a long way in improving the efficiency of air 

traffic flow management in the aviation industry. 

 

6.2 Decision making and Air traffic Flow Management 
 
Decision making is a key ingredient in any management process. A decision taken now 

regardless of its magnitude is much better than a decision taken moments later for it saves lives. 

A decision taken without sufficient consultation from those concerned to provide necessary 

information in a good time, within the right time intervals leaves the decision maker as a blame 

bearer for the repercussions thereafter. In this era of ICT, it is very easy to believe without 

question that automation of systems is the only sure way by which management of information 

systems should be operated. It is imperative to stretch one more mile and see the relevance of 

human intervention through both evidence-based and simulated models as the ones developed in 

this study. This helps answer one of the often ignored, but important management question of 

whether management should sit back and relax since they have automated management systems 

like management information systems that give managers the information they need to make 

routine and operational decisions. This study showed that human intervention is paramount at all 

levels of decision making; it is such models that result into automated systems, but the human 

input should precede the automation process whose performance require detailed testing to 

guarantee system accuracy and reliability.  
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6.2 Implications of Air Traffic Flow Management Decision 
 

Air traffic flow management is crucial not only in ensuring efficiency in aviation business 

management productivity of a country, but also directly concerns people’s lives and well-being. 

A number of lives are affected due to air traffic not well-informed decisions varying from 

passengers on board; the crew and people on the ground pursuing their daily activities in say 

trading centres, cities, offices, homes, educational institutions and even in gardens practising 

agriculture. Such worst case scenarios would be avoided if appropriate decisions are taken by 

applying more customised systems to inform pilots and air traffic flow managers. 

 

A case pointed out on the 8th October, 2001 at Linate airport in Milan, Italy, whereby an MD87 

SAS airplane with 110 crew members and passengers on board collided on the ground with a 

Cessna Citation II jet with 2 pilots and 2 passengers Lunetta P et al. (2003) . The plane caught 

fire after having crashed into an airport baggage hangar causing death of 118 victims belonging 

to nine nationalities including four other victims among the ground staff.  

 

A fatal plane accident that involved a Cessna 206 small aircraft in Malawi killed several Britons 

on the 16th June, 2007 where, the reported main cause was poor weather. A similar cause resulted 

into the loss in May, 2007 of a Kenya Airways Boeing 737 over Cameroon, in which 114 lives, 5 

of them British citizens were lost Irwin (2009) . Some statistics pertaining Africa show that air 

travel in Africa carries above average risks. While only about 4 percent of the world’s air traffic 

pass over Africa, since the year 2001, over 17 percent of the world’s fatal air crashes have 

occurred here in Africa. This is obviously a cause of great concern and while it is important to 
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recognize that even in Africa, air transport is still a relatively safer form of transport, more work 

through research needs to be done to improve the safety of air travel.  

 

The African and Indian Ocean Islands Safety Enhancement Team (ASET) based in Nairobi, 

Kenya, to coordinate air safety matters amid growing concerns on air safety in  the continent was 

launched, Mburu (2004) . ASET’s objective is to help Africa achieve international air safety 

levels and hope to reduce the continents’ civil aviation accidents by half by the year 2010.  

 

6.2 Air Traffic Management Information Systems 
 
Many information systems do exist, among them are, decision support systems (DSS) that 

managers use in semi-structured and unstructured situations to analyse information relevant for a 

particular decision like should an aircraft be delayed on ground now at Entebbe International 

airport because of unfavourable weather conditions at say Heathrow International airport or 

otherwise. A DSS is designed normally to complement the decision style of management, hence 

when the decision style of management is poor, even the DSS will inherit the poor style. 

Analysis of operations of DSS reveals very interesting findings in regards to modelling. The 

components of a DSS include: data management to organize relevant internal and external 

information into a database. Model management is used to support the design and choice phases 

of decision making. Dialog management is the user interface that allows the manager to interact 

with and use the DSS easily and effectively. And the main contribution of this study falls under 

model management. 
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Aviation Management Information System (AMIS)5 is a very powerful integrated computer 

system for managing the technical operations activities of an airline, or aircraft fleet operator.  

The system is licensed worldwide to large and small companies operating many types of fixed 

and rotary-wing aircraft.  

AMIS was designed from its very beginning in 1980 as a professional aviation technical 

operations management system.  Since then the system has undergone many improvements 

based on direct customer, regulatory and industry input.  The system is based upon open systems 

technology and runs on microcomputers to mainframes under the Unix / Linux Operating System 

and various Relational Database Management Systems.  Because of its architecture, AMIS can 

be operated 24 hours a day / 7 days a week with no downtime at all. There are no software limits 

imposed by the system which is parameter-driven and very user-friendly. Although, AMIS-2008 

represents the latest, most powerful and user-friendly version of the system, it does not provide 

computations for probability of aircraft delay, airport technical efficiencies and subsequently, the 

airport utility performance level. 

The other system popularly used is the airline management information system, AMIS6 is a 

completely customized and versatile application developed for Airlines to manage their entire 

activities. This system covers all aspects of airline's requirements in modular structure and 

                                                        
5 The aviation management information system is developed by the Transportation Systems 
Consulting Corporation, whose website http://www.tsc-corp.com/amis.htm was accessed on 
the 25th October, 2010 
6 The airline management information system was developed by Computer Advance System 
Trading House Pvt. Ltd. Their website is http://www.softscout.com/software/Aviation-and-
Aerospace/Airline-Management/Airlines-Management-Information-System.html accessed on the 
25th October, 2010. 
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effectively creates a paper-less office. It consists of various modules, such as, Finance & 

accounting; Reservation & ticketing; Inventory & procurement; Flight operation & engineering; 

Personnel & payroll and Marketing & statistics. However, it does not track the timeliness of the 

airlines’ aircraft timeliness based on the probability of aircraft delay, their efficiencies and 

subsequently, the aircraft utility performance levels. 

Therefore, a stochastic optimisation system that applies the necessary operational data from 

available sources such as meteorological briefing office and aviation manifest data, as one whose 

prototype is developed and presented in this Thesis is worthy advancing. The prototype system is 

capable of using inputs from the logistic and stochastic frontier models and using them to 

optimise the airport utility for any given set of time periods. It is therefore possible to rank the 

performance of airports within a region, airlines at an airport or even individual aircrafts within 

the airline.  

 

6.2 Air Traffic Flow Management Contribution to National Development  
 

Millennium development goal number eight emphasizes to a global partnership for development 

and focuses on the following important issues of building meaningful partnerships between the 

industrialized and developing countries through larger and better development assistance. The 

development of an open and rule-based trading system and development of a comprehensive 

solution to the debt issue. The goal furthermore, suggests that special attention should be given 

to LDCs, SIDs and landlocked countries such as Uganda. This goal cannot be achieved by the 

prescribed year of 2015 if appropriate measures in air traffic flow management system have not 

been enhanced with appropriate results and models as those presented in this thesis. Efficiency of 
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air traffic flow management is a central factor in the achievement of not only MDG eight, but all 

other MDGs which are logically interrelated. Therefore, in the pursuit of MDGs, developing 

countries should prioritize air traffic flow management systems in their respective countries so 

that goods and services are transported on time. Such goods and services cover a bigger spectrum 

that include, but not limited to improved seeds to combat hunger and poverty, improved 

environmental sustainability technologies, improved drugs and technologies to combat diseases 

such as HIV/AIDS, improved maternal and child care technologies and generally affordable 

agricultural modernization technologies.  
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CHAPTER SIX 
CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter draws conclusions based on the findings of the study from which recommendations 

in relationship to air traffic management and additional knowledge gaps are made.  

 

5.1 Conclusions 
 

This study made fundamental contributions towards air traffic flow management problem by 

firstly developing evidence based statistical models. The development of these models was based 

on the aggregated daily historical data for the period 2004 through 2008. The main purpose of 

data modelling was to derive information that would subsequently aid air traffic flow 

management to develop appropriate strategic decisions that enable efficient air traffic flow based 

on the a number of significant explanatory parameters. The models are subsequently used as a 

reference tool for computations of probability of aircraft delays and measurement of airport 

operations’ efficiency at varying time intervals.  Secondly, the stochastic optimization models 

developed are a fundamental tool towards efficient use of aircrafts, airport space and time 

resources. The three utility models are based on the interaction terms between the derived 

probabilities of delay and airport inefficiency scores. Two stochastic optimisation models 

measure airport utility at aircraft departure and arrival, while the third model is an aggregate of 

utility at departure and arrival. In the stochastic optimisation models presented, it is evident that 

the maximum utility of an airport for a given time period, will have a better interaction mix of 

probability of delay and airport inefficiency value. One may go deeper to establish these values 

and also the values of the explanatory parameters that resulted into the maximum utility for the 

airport over scenarios corresponding to time periods. Subsequently, a scenario where there are no 
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delays at all, that is, one with a delay of zero and inefficiency of zero, is found to yield the 

maximum utility of 100 percent for the airport assuming all other factors a constant. Such a 

scenario would imply well-organised and coordinated air traffic management team coupled with 

good weather. Furthermore, it is suggested from the model analysis that if a delay is inevitable, it 

is better to have it before aircraft departure than in air before arrival because of high risks and 

cost implications. 

 

Current Air Traffic Management in Uganda 
 

Air traffic flow in Uganda is managed by the Department of Air Traffic Management (DATM), 

under the Directorate of Air Navigation Services (DANS) of the Civil Aviation Authority 

(CAA). The main functions of the DATM are to: 1) prevent collision between aircraft both in 

flight and on the maneuvering area; 2) prevent obstructions on the maneuvering area; 3) expedite 

and maintain an orderly flow of air traffic; 4) provide advice and information useful for the safe 

and efficient conduct of flights; 5) notify appropriate organisations regarding aircraft in need of 

search and rescue aid and assist such organisations as required. However, it is observed that the 

smooth flow of air traffic in Uganda is also influenced by exogenous factors mostly determined 

by conditions of airports where departing aircrafts are destined. The exogenous factors are 

categorized as environmental and aviation related.  

Environmental factors 
 
Weather phenomena like rain and thunderstorms act to reduce the visibility at Entebbe 

International Airport (EIA). The Department of Meteorology is mandated to provide timely 

weather information to the CAA to facilitate aircraft flow management and informed decisions in 

planning aircraft movement by the DATM. The other environmental factor is the bird hazard; 
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besides, the local and migratory tendency of bird species, there are other bird attractions reported 

at EIA including; fishing, garbage, sand excavations, gardening, human settlements and other 

natural attractions like anthills, tall trees and bushes. However, to abate bird hazard phenomenon, 

a number of measures have been taken that include; formation of the Bird Hazard Control Unit 

(BHCU), Environment Management, Community-Based Activities, Bird Scare Methods, Foot 

Patrols, Pyrotechnics and Runway Inspections. Due to these measures, the prevalence rate of bird 

strikes has drastically reduced at the airport. It is, however, estimated that Airline companies 

could lose up to $10 million in replacement of a single aircraft engine due to destruction by 

birds. In worse cases, there could be total loss of an aircraft, its passengers and or cargo.  

 

Aviation factors 
 
 
Aviation factors refer to the airport capacity, facilities, quantity and quality of services provided, 

including the human resource capacity at the airport to the satisfaction of aviation passengers and 

cargo. Uganda has Bilateral Air Service Agreements with over thirty three countries. Sixteen 

international Airlines have scheduled operations to and from Entebbe International Airport 

which serve 14 destinations. The airport also offers hub and spoke operations especially in the 

Great Lakes region and connections to the rest of the world. There is currently one runway 17/35 

at EIA whose capacity seems to be constrained due to the increasing aircraft operations.  
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Air Traffic Management Implications 
 
 
This thesis has implications for management of air traffic flow at Entebbe International Airport. 

Lessons from it might have wider implications in other airports with a similar context. As a 

result of lack of timely information and tools to facilitate management of air traffic flow 

management at the Airport, Civil Aviation Authority could promote the development of 

customised tools that generate information to assist in air traffic flow management. They should 

take advantage of the skills and knowledge that exist to develop more appropriate statistical tools 

based on the local challenges faced at the airport. Such efforts could then be customised and 

automated to manage information about the inevitable aircraft delays. 

  

The advantages that accrue from efficient air traffic flow cannot be understated. Uganda’s profile 

as a landlocked country renders air transport a strategic importance to the nation as it guarantees 

an alternative gateway to the rest of the world. As it is expected, relative to other transport 

means, air transport provides the most efficient and quickest transport means to and from the 

country. The dependency of the country’s economy to agriculture means that perishable exports 

require reaching their destinations much quicker, thus any aircraft delay may lead to loss of 

income. Therefore, the development of a safe, efficient and reliable air transport industry should 

be among government's priority programmes.  

 
Theoretical Implications 
 
A review of literature identified a research gap in air traffic flow management aimed at 

improving air traffic flow management at airports especially in developing countries. A number 

of scholars have carried out research on air traffic flow management for developed countries. A 

few researchers have dealt with air traffic flow management problem in developing countries. 
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Little research on improving air traffic flow management especially by focussing on air traffic 

delays in developing countries was identified. No research examined air traffic flow management 

to provide a tool for air traffic delays management was identified for the Africa region. None 

could be found that looked at stochastic analysis of air traffic delays, hence stochastic 

optimisation modelling with a wide definition used in this research.  

 

One of the important contributions of this thesis is the bringing together of existing knowledge 

from different disciplines to address the issue of inefficient air traffic flow management, a 

problem affecting many airports in developing countries. The thesis argues that while it is 

challenging, historical data would be used to generate necessary and timely statistics for use by 

the air traffic management to make informed decisions. This would go a long way in reducing 

the otherwise would be avoided air traffic delays, thus leading to a sustainable efficient flow of 

air traffic. In addition to this, the thesis contributed to the knowledge gap between theory of 

maximisation of aircraft utility that relates to the interaction between probability of delay and the 

airport inefficient performance level. Minimisation of air traffic delays will subsequently be 

achieved when statistical tools are used to inform air traffic management through development of 

algorithms and graphical user interfaces for the stochastic optimisation models. Many air traffic 

managers, though sometimes would notice and record air traffic delays at Entebbe International 

Airport, they would neither quantify it nor trace for any existing trend. No research that looked at 

the proportions of daily air traffic delays was identified. Most research about the subject 

identified for developed countries especially in the United States of America analysed aircraft 

delay based upon the duration of delay in minutes. The advantage that accrued from deriving the 

airport utility based on the interaction term is an improvement of the time complexity. The 
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models developed in this research take much smaller time to compute than cases where the delay 

is recorded in minutes would take. This research adds to the theory of algorithm design and 

analysis that considers time complexity as a more serious factor to consider than space 

complexity. 

 
Final Reflections 
 
Research in the area of air traffic flow management in Uganda is substantially lacking. There 

exists no literature published for studies done about air traffic flow management in Uganda. 

However, many countries develop because of the advancement of localised management tools 

and models that enhance decision making processes. More specifically, timely aircraft operations 

at departure and arrival leads to efficient air traffic flow management which subsequently 

contributes to sustainable economic development. This can be achieved when there is timeliness 

in handling of both cargo and passenger departures and arrivals.  
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6.2 Recommendations 
 

This section presents recommendations categorised into application of stochastic optimisation 

models in air traffic flow management and areas of further research. 

 

Application of Stochastic Optimisation Models in Air Traffic Flow Management 
 

The study recommends appropriate use of the tools developed and presented in this study. It also 

encourages air traffic management to facilitate implementation of the models and knowledge 

obtained from this research. The models are well-developed, tested and ready for implementation 

with the permission of the civil aviation authority. Sensitization of air traffic management about 

the need to support evidence-based research and development of more appropriate and helpful 

tools to facilitate efficient management of air traffic flow in Uganda is highly encouraged. 

Furthermore, appropriate policies can be developed based on the information derived from the 

models presented in this thesis.  

 

The Civil Aviation Authorities needs to empower and facilitate their Statistics Departments to 

collect data about Aircraft timeliness by type of aircraft, aircraft make, Airline and other 

parameters so as to monitor air traffic efficiency at Entebbe International Airport. Subsequently, 

the data may be sent into a repository managed by the Bureaux of Statistics and any analysis 

made to be published and disseminated through Academic Journals and other electronic media 

such as the Internet. 
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Policy implications on air traffic management 
 
 
To achieve any set objective, there must exist a policy. Therefore, if governments tasked  the 

aviation industry to work towards an improved vision for safe, secure, efficient and liberalized 

industry that is environmentally responsible, then the future would be very bright Bisignani 

(2008) . To achieve a better overall efficiency of air traffic, higher safety standards and better use 

of airspace capacity in the region and the African continent at large, individual countries must 

have appropriate air traffic management policies.  The following reasons are significant in 

illuminating the need to have a better ATM policy whose overall goal should be to improve 

existing air transport system.  

i) The growing daily proportions of delays 

ii) Steady rise in air travel in the country and region 

iii) Shrinking airport capacity in terms of runways 

iv) Fragmentation of African airspace 

v) Use for military purpose of the airspace in terms of peacekeeping. 

 

The ATM policy should be driven by the need to establish higher safety standards, better overall 

efficiency of air transport and better use of airspace capacity.  

 

However, to improve air traffic management, the research recommends an assessment of the 

factors that may shape the environment for modernisation of air traffic management and among 

them are the following. 
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a) Political imperative is required towards air traffic management in order to command 

consistent attention from the legislation and the government. The Civil Aviation 

Authority (CAA) initiative to develop a new national air transportation plan and recent 

parliamentary legislation are encouraging and have provided new thrust and direction, but 

it remains to be seen if this can be implemented. 

 

b) The consistent legacy of technological problems requires huge investments. Globally, the 

last decade has seen many false starts in deploying new technologies for ATM. This has 

consumed resources and created a hesitation to invest. 

 

c) There is the famous budget constraint especially in the developing countries. A new 

ATM system could yield large savings for the economy, but massive government 

investment in a system where the payoff could be delayed for a decade or more is 

unlikely given the budget problems the countries on the African continent are faced with. 

Nor are the airlines in a situation where they could fund large-scale change in air traffic 

management. 

 

d) There is lack of sufficient consultative culture with the engineering professionals. The 

CAA and the aerospace community may have a reservoir of talent and expertise, but 

there are insufficient links to policymaking or to the political leadership especially in the 

developing countries. ATM is a complex subject. This can limit the ATM community’s 

effectiveness in influencing policy and decision making. 
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Suggestions for accelerating national modernisation of ATM include. 

1. The civil aviation authority needs to develop a new ATM plan. It must create a broad 

vision for the future and focus on action. This means identifying relevant existing 

programs, allocating resources as needed to new research and programs, establishing 

processes within the CAA and other supporting agencies, and creating a coherent, 

integrated approach to change. 

2. Robust consultation on modernization with foreign ATM authorities at the political and 

technical level (Europe, USA and perhaps in Asia) to ensure international coordination 

must become a primary CAA mission. These processes must facilitate ATM 

transformation and become a core component of the CAA’s work. The joint planning 

effort will require the development of new formal processes for coordination, for 

example through new bilateral agreements at the political level, with corresponding 

coordination at the technical level.  

3. There is need for a presidential decision to endorse ATM transformation as a national 

priority, identify goals and timelines, and designate a State House entity specifically 

responsible for coordinating action on ATM among all involved agencies (CAA, Air 

Force, and the Ministries of Defense, Works and Transport, Investment Authority, Trade 

and Industry and Water and Environment). The CAA, unequalled in its technical 

expertise, should not be asked to shoulder interagency policy and political tasks for which 

it was not designed. 

4. Despite the larger budgetary challenges the country has always faced partly due to the 

fact that it is a developing country, once program requirements are established under the 

ATM planning effort, new mechanisms for funding the modernization of air traffic 
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management should be found to allow a substantial increase. The first step is to fund the 

developmental and planning effort. The parliamentary committees of jurisdiction, which 

play a central role in providing continued oversight and encouragement for 

modernization, should consider whether additional legislation could help achieve this. 

5. The CAA needs to reorganize itself so as to emphasize customer service. This is good, 

but the CAA also needs to reorganize to make transformation of ATM a core 

organizational mission. This will require a long-term strategy endorsed by senior 

management at the CAA and Ministry of Works and Transport, as well as coordination 

with foreign ATM authorities. In approaching this problem, the CAA can draw on the 

experiences of the Ministry of Defense in transformation since modernisation of the army 

primarily implies modernisation of ATM. 
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6.3 Further Research 
 
There is need to pursue further research in the area of air traffic flow management using 

methodologies such as stochastic modelling, systems analysis and subsequently object oriented 

software development for the airports on the African continent so as to create a friendlier 

interface for promotion and use of the models such as the one presented in the study. 

 

Further research need to be carried out to fill the pending gaps that have not been covered in this 

study such as a comparative analysis of the performance of international airports in the African 

region that would lead to the development of compromised multi-airport stochastic optimization 

models. The area of interest would be a study towards disaggregation of airport or aircraft 

timeliness performance based on the category of departure and arrival airports. This would 

require more research to the application of dynamic stochastic optimization models that would 

employ the Bayesian theory to model both en-route and departure aircraft delays in a multi-

airport environment. 

 

Furthermore, research need to be done to integrate R statistical language at the backend and C# 

computer programming language at the frontend to present the graphical user interface while 

presenting stochastic optimisation models.  
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APPENDICES 
 
Appendix A:  Probability of Aircraft Departure Delay and Airport Inefficiency against Time  
  

 

Source: Wesonga (2010), PhD Research Study 
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Appendix B:  Probability of Aircraft Arrival Delay and Airport Inefficiency against Time 

 

 

Source: Wesonga (2010), PhD Research Study 
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Appendix C: R Objects for the Stochastic Optimisation Model  

  
Object Description 

"ahp" Air holding program 

"ArrDelay" Arrival Delay 

"ArrDelayU"            Arrival Delay Utility 

"DepDelay" Departure Delay 

"DepDelayU" Departure Delay Utility 

"E2MaximumFinUtilityH" Experiment two maximum final utility higher probabilities 

"E2MaximumFinUtilityL"  Experiment two maximum final utility lower probabilities 

"fct" Function 

"FinUtilities" Final utilities 

"FinUtility" Final utility 

"gdp" Ground delay programme 

"lambda"               Lambda 

"MaximumFinUtility" Maximum final utility 

"Ontime" On time 

"OntimeProp"           On time proportions 

"phd" Degree of philosophy 

"ProbUtilities" Probability of utilities 

"ScenarioProb"         Scenario probability 

"sumUtility" Sum of utility 

"Utility" Utility 

"varArrDelay"          Variance of arrival delay 

"varDepDelay" Variance of departure delay 

"varOntimeProp"        Variance of on time proportions 
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Appendix D:  R Code for the Stochastic Optimisation Model  
 

1. # Stochastic Optimisation Models for Air Traffic Management 
2. # By Wesonga Ronald, PhD. Statistics Researcher 

 
3. # Supervisors: 
4. # Professor Jehopio Peter 
5. # Professor Xavier  Mugisha 
6. # Professor Venancius Baryamureeba 

 
7. # Chair              - Agnes Ssekiboobo (Mrs.) 
8. # Academic Registrar - Tom Otim 

 
9. # Defence opponent   - Professor Fabian Nabugoomu 

 
10. # Panelists: 
11. # Professor Livingstone Luboobi 
12. # Professor Leonard Atuhaire 
13. # Professor Makumbi Tom Nyanzi 
14. # Professor Bruno Ocaya 
15. # Professor Ngubiri Johhn 
16. # Professor Ntozi James 
17. # Professor Juma Kasozi  

  
18. # chapter Three - statistical models for air traffic flow management 
19. # chapter Four  - stochastic optimisation models for air traffic flow management 

 
 

20. setwd("C:/Users/Wesonga/Documents/Dacer/phd/data/AGG/R") 
21. getwd() 

 
22. # read.csv("rdataset.csv",header=TRUE) # if only reading is  necessary 
23. phd <- read.csv("rdataset.csv",header=TRUE) 
24. edit(phd) 
25. dim(phd) 

 
26. # preliminary analysis and tests 

 
27. shapiro.test(phd$gdpdrate) 
28. shapiro.test(phd$ahpdrate) 
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29. # par(mfrow=c(2,1)) 
30. # qqnorm(phd$gdpdrate) 
31. # qqnorm(phd$ahpdrate)      # Noramlity check 
32. # stripchart(phd$ahpdrate)  # Continuity of data 

 
33. linest <- lm(phd$ahpdrate ~ phd$gdpdrate) 
34. plot(phd$ahpdrate ~ phd$gdpdrate, pch=16, main = "plot of departure delay against arrival 

delay proportions", sub="at Entebbe international Airport") 
35. abline(linest, col="RED") 

 
36. t.test(phd$gdpdrate, phd$ahpdrate) 
37. mean(phd$gdpdrate) - mean(phd$ahpdrate) 

 
38. par(mfrow=c(1,2)) 

 
39. hist(log(phd$gdpdrate), seq(2, 5.0, 0.5), prob=TRUE, main="Density against Logs of 

Proportions of Departure Delay", xlab="Logs of A/C Proportions of Departure Delay") 
40. lines(density(log(phd$gdpdrate), bw=0.5)) 
41. rug(log(phd$gdpdrate)) 

 
42. hist(log(phd$ahpdrate), seq(2, 5.0, 0.5), prob=TRUE, main="Density against Logs of 

Proportions of Arrival Delay", xlab="Logs of A/C Proportions of Arrival Delay") 
43. lines(density(log(phd$ahpdrate), bw=0.5)) 
44. rug(log(phd$ahpdrate)) 

 
 

45. par(mfrow=c(3,2)) 
46. plot(phd$gdpdrate ~ phd$numops +phd$sch_prop +phd$non_sch_prop +phd$POBout 

+phd$visiblty+phd$qnh)  
 

47. # subsetting data by year 
 

48. year2004 <- subset(phd, phd$year == 2004) 
49. year2005 <- subset(phd, phd$year == 2005) 
50. year2006 <- subset(phd, phd$year == 2006) 
51. year2007 <- subset(phd, phd$year == 2007) 
52. year2008 <- subset(phd, phd$year == 2008) 
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53. # DEPARTURE DELAY ANALYSIS 
54. # using dummies of departure delay as a binary dependent variable 
55. phddepdelay <- glm(phd$gdpfifty ~ 

phd$ahpfifty+phd$ahpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBout+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

56. search<-step(phddepdelay) 
57. summary(search) 
58. probdepdelay <- predict(phddepdelay, type = "response") 
59. summary(probdepdelay) 

 
60. #monthly analysis at 50 percent threshold  
61. phddepfifty <- glm(phd$gdpfifty ~ 

phd$ahpfifty+phd$ahpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBout+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

62. searchfifty<-step(phddepfifty) 
63. summary(searchfifty) 
64. probdepfifty <- predict(phddepfifty, type = "response") 
65. summary(probdepfifty) 

 
 

66. phd.dep.propfifty<- ts(phd$gdpdrate,start=c(2004,1),frequency=365) 
67. phd.dep.probfifty<- ts(probdepfifty,start=c(2004,1),frequency=365) 

 
68. par(mfrow=c(2,2)) 
69. plot (phd.dep.propfifty, main = "Proportion of aircraft departure delay against Time",ylab = 

"Proportion of aircrafts monthly arrival delay") 
70. plot (phd.dep.probfifty, main = "Probability of aircraft departure delay (50% threshold) 

against Time",ylab = "Estimated probability of departure delay") 
71. t.test(probdepfifty, phd$gdpdrate) 
72. var.test(probdepfifty,phd$gdpdrate) 
73. prop.test(probdepfifty, phd$gdpdrate) 
74. prop.trend.test(probdepfifty,phd$gdpdrate) 

 
 

75. #monthly analysis at 60 percent threshold  
76. phddepsixty <- glm(phd$gdpsixty ~ 

phd$ahpsixty+phd$ahpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBout+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

77. searchsixty<-step(phddepsixty) 
78. summary(searchsixty) 
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79. probdepsixty <- predict(phddepsixty, type = "response") 
80. summary(probdepsixty) 

 
81. phd$probdepsixty <- predict(phddepsixty, type = "response", asInData = TRUE) 
82. mean(phd$probdepsixty) 
83. summary(phd$probdepsixty) 

 
84. phd.dep.propsixty<- ts(phd$gdpdrate,start=c(2004,1),frequency=365) 
85. phd.dep.probsixty<- ts(phd$probdepsixty,start=c(2004,1),frequency=365) 

 
86. par(mfrow=c(2,1)) 
87. plot (phd.dep.propsixty, main = "Proportion of aircraft departure delay against Time",ylab 

= "Proportion of aircrafts monthly arrival delay") 
88. plot (phd.dep.probsixty, main = "Probability of aircraft departure delay (60% threshold) 

against Time",ylab = "Probability of departure delay") 
 

89. # ARIMA models Analysis of departure delay 
90. phd.dep.probsxty <- diff(phd.dep.probsixty,1,1) 
91. plot(phd.dep.probsxty) 

 
92. par(mfrow=c(2,2)) 
93. acf(phd.dep.probsixty, lag.max = NULL,main="ACF for prob of departure delay", type = 

c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

94. pacf(phd.dep.probsixty, lag.max = NULL,main="PACF for prob of departure delay", plot = 
TRUE, na.action = na.fail) 
 

95. acf(phd.dep.probsxty, lag.max = NULL,main="ACF for prob of departure delay 1st diff", 
type = c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

96. pacf(phd.dep.probsxty, lag.max = NULL,main="PACF for prob of departure delay 1st diff", 
plot = TRUE, na.action = na.fail) 
 

97. fit1<-arima(phd.dep.probsxty,c(1,1,1))  
98. fit2<-arima(phd.dep.probsxty,c(0,1,1))  
99. fit3<-arima(phd.dep.probsxty,c(1,0,1)) 
100. fit4<-arima(phd.dep.probsxty,c(1,1,0)) 

 
101. fit1 
102. fit2 
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103. fit3 
104. fit4 

 
105. tsdiag(fit1) 
106. tsdiag(fit2) 
107. tsdiag(fit3) 

 
 

108. # disaggregation by year 
 

109. year2008depsixty <- glm(year2008$gdpsixty ~ 
year2008$ahpsixty+year2008$ahpdelay+year2008$numops+year2008$shedules+year2008
$charters+year2008$freiters+year2008$NCF+year2008$POBout+year2008$windsped+ye
ar2008$visiblty+year2008$qnh,family="binomial",data=year2008) 

110. searchyear2008sixty<-step(year2008depsixty) 
111. summary(searchyear2008sixty) 

 
112. year2008$probdepsixty <- predict(year2008depsixty, type = "response", asInData = 

TRUE) 
113. summary(year2008$probdepsixty) 

 
114. year2008.dep.propsixty<- ts(year2008$gdpdrate,start=c(2008,1),frequency=366) 
115. year2008.dep.probsixty<- ts(year2008$probdepsixty,start=c(2008,1),frequency=366) 

 
116. # par(mfrow=c(5,1)) 
117. plot (year2008.dep.propsixty, main = "Proportion of aircraft departure delay against 

Time",ylab = "Proportion of aircrafts monthly arrival delay") 
118. plot (year2008.dep.probsixty, main = "departure delay probability(60% threshold) for 

2008",ylab = "departure delay prob") 
 
 
 

119. #monthly analysis at 70 percent threshold  
120. phddepseventy <- glm(phd$gdpseventy ~ 

phd$ahpseventy+phd$ahpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+p
hd$NCF+phd$POBout+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=ph
d) 

121. searchseventy<-step(phddepseventy) 
122. summary(searchseventy) 
123. probdepseventy <- predict(phddepseventy, type = "response") 
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124. summary(probdepseventy) 
 

125. phd$probdepseventy <- predict(phddepseventy, type = "response", asInData = TRUE) 
 
 

126. phd.dep.propseventy<- ts(phd$gdpdrate,start=c(2004,1),frequency=365) 
127. phd.dep.probseventy<- ts(probdepseventy,start=c(2004,1),frequency=365) 

 
128. par(mfrow=c(1,2)) 
129. plot (phd.dep.propseventy, main = "Proportion of aircraft departure delay against 

Time",ylab = "Proportion of aircrafts monthly arrival delay") 
130. plot (phd.dep.probseventy, main = "Probability of aircraft departure delay (70% 

threshold) against Time",ylab = "Estimated probability of departure delay") 
 

131. #monthly analysis at 80 percent threshold  
132. phddepeighty <- glm(phd$gdpeighty ~ 

phd$ahpeighty+phd$ahpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+ph
d$NCF+phd$POBout+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

133. searcheighty<-step(phddepeighty) 
134. summary(searcheighty) 
135. probdepeighty <- predict(phddepeighty, type = "response") 
136. summary(probdepeighty) 

 
 

137. phd.dep.propeighty<- ts(phd$gdpdrate,start=c(2004,1),frequency=365) 
138. phd.dep.probeighty<- ts(probdepeighty,start=c(2004,1),frequency=365) 

 
139. par(mfrow=c(1,2)) 
140. plot (phd.dep.propeighty, main = "Proportion of aircraft departure delay against 

Time",ylab = "Proportion of aircrafts monthly arrival delay") 
141. plot (phd.dep.probeighty, main = "Probability of aircraft departure delay (80% 

threshold) against Time",ylab = "Estimated probability of departure delay") 
 
 

142. # ARRIVAL DELAY ANALYSIS 
143. # using dummies of arrival delay as a binary dependent variable 

 
144. phdarrdelay <- glm(phd$ahpfifty ~ 

phd$gdpfifty+phd$gdpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBin+phd$windsped+phd$visiblty+phd$qnh,family="binomial", data=phd) 



154 
 

145. search<-step(phdarrdelay) 
146. summary(search) 
147. probarrdelay <- predict(phdarrdelay, type = "response") 
148. summary(probarrdelay)         

 
149. # at threshold delay = 60 
150. # sample(phd$ahpdummy[phd$monthly==60])  => sample approach 

 
151. # phdarrdelayforty <- glm(sample(phd$ahpforty[phd$monthly==60]) ~ 

sample(phd$gdpforty[phd$monthly==60])+sample(phd$gdpdelay[phd$monthly==60])+sa
mple(phd$numops[phd$monthly==60])+sample(phd$shedules[phd$monthly==60])+sampl
e(phd$charters[phd$monthly==60])+sample(phd$freiters[phd$monthly==60])+sample(ph
d$NCF[phd$monthly==60])+sample(phd$POBout[phd$monthly==60])+sample(phd$wind
sped[phd$monthly==60])+sample(phd$visiblty[phd$monthly==60])+sample(phd$qnh[phd
$monthly==60]),family="binomial", data=phd) 

152. # search<-step(phdarrdelayforty) 
153. # summary(search) 
154. # probarrdelayforty <- predict(phdarrdelayforty, type = "response") 
155. # mean(probarrdelayforty) 

 
 

156. #monthly analysis at 50 percent threshold  
157. phdarrfifty <- glm(phd$ahpfifty ~ 

phd$gdpfifty+phd$gdpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBin+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

158. searcharrfifty<-step(phdarrfifty) 
159. summary(searcharrfifty) 
160. probarrfifty <- predict(phdarrfifty, type = "response") 
161. summary(probarrfifty) 

 
 

162. phd.arr.propfifty<- ts(phd$ahpdrate,start=c(2004,1),frequency=365) 
163. phd.arr.probfifty<- ts(probarrfifty,start=c(2004,1),frequency=365) 

 
164. par(mfrow=c(2,2)) 
165. plot (phd.arr.propfifty, main = "Proportion of aircraft arrival delay against Time",ylab = 

"Proportion of aircrafts monthly arrival delay") 
166. plot (phd.arr.probfifty, main = "Probability of aircraft arrival delay (50% threshold) 

against Time",ylab = "Estimated probability of arrival delay") 
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167. #monthly analysis at 60 percent threshold  
 

168. phdarrsixty <- glm(phd$ahpsixty ~ 
phd$gdpsixty+phd$gdpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+phd
$NCF+phd$POBin+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

169. searcharrsixty<-step(phdarrsixty) 
170. summary(searcharrsixty) 
171. probarrsixty <- predict(phdarrsixty, type = "response") 
172. summary(probarrsixty) 

 
173. phd$probarrsixty <- predict(phdarrsixty, type = "response", asInData = TRUE) 
174. mean(phd$probarrsixty) 
175. summary(phd$probarrsixty) 

 
176. phd.arr.propsixty<- ts(phd$ahpdrate,start=c(2004,1),frequency=365) 
177. phd.arr.probsixty<- ts(phd$probarrsixty,start=c(2004,1),frequency=365) 

 
178. par(mfrow=c(2,1)) 
179. plot (phd.arr.propsixty, main = "Proportion of aircraft arrival delay against Time",ylab 

= "Proportion of aircrafts monthly arrival delay") 
180. plot (phd.arr.probsixty, main = "Probability of aircraft arrival delay (60% threshold) 

against Time",ylab = "Probability of arrival delay") 
 

181. # ARIMA models Analysis of arrival delay 
 

182. phd.arr.probsxty <- diff(phd.arr.probsixty,5,5) 
183. plot(phd.arr.probsxty) 

 
184. par(mfrow=c(2,2)) 
185. acf(phd.arr.probsixty, lag.max = NULL,main="ACF for prob arrival delay", type = 

c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

186. pacf(phd.arr.probsixty, lag.max = NULL,main="PACF for prob of arrival delay", plot = 
TRUE, na.action = na.fail) 
 

187. acf(phd.arr.probsxty, lag.max = NULL,main="ACF for arrival delay prob 1st diff", type 
= c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

188. pacf(phd.arr.probsxty, lag.max = NULL,main="PACF for arrival delay prob 1st diff", 
plot = TRUE, na.action = na.fail) 
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189. fit1<-arima(phd.arr.probsxty,c(1,1,1))  
190. fit2<-arima(phd.arr.probsxty,c(0,1,1))  
191. fit3<-arima(phd.arr.probsxty,c(1,0,1)) 
192. fit4<-arima(phd.arr.probsxty,c(1,1,0)) 

 
193. fit1 
194. fit2 
195. fit3 
196. fit4 

 
197. tsdiag(fit1) 
198. tsdiag(fit2) 
199. tsdiag(fit3) 

 
200. # ARRival disaggregation by year 

 
201. year2004arrsixty <- glm(year2004$ahpsixty ~ 

year2004$gdpsixty+year2004$gdpdelay+year2004$numops+year2004$shedules+year2004
$charters+year2004$freiters+year2004$NCF+year2004$POBin+year2004$windsped+year
2004$visiblty+year2004$qnh,family="binomial",data=year2004) 

202. searchyear2004sixty<-step(year2004arrsixty) 
203. summary(searchyear2004sixty) 

 
204. year2004$probarrsixty <- predict(year2004arrsixty, type = "response", asInData = 

TRUE) 
205. summary(year2004$probarrsixty) 

 
 

206. #monthly analysis at 70 percent threshold  
 

207. phdarrseventy <- glm(phd$ahpseventy ~ 
phd$gdpseventy+phd$gdpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+p
hd$NCF+phd$POBin+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

208. searcharrseventy<-step(phdarrseventy) 
209. summary(searcharrseventy) 
210. probarrseventy <- predict(phdarrseventy, type = "response") 
211. summary(probarrseventy) 
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212. phd.arr.propseventy<- ts(phd$ahpdrate,start=c(2004,1),frequency=365) 
213. phd.arr.probseventy<- ts(probarrseventy,start=c(2004,1),frequency=365) 

 
214. par(mfrow=c(1,2)) 
215. plot (phd.arr.propseventy, main = "Proportion of aircraft arrival delay against 

Time",ylab = "Proportion of aircrafts monthly arrival delay") 
216. plot (phd.arr.probseventy, main = "Probability of aircraft arrival delay (80% threshold) 

against Time",ylab = "Estimated probability of arrival delay") 
 

217. # monthly analysis at 80 percent threshold  
 

218. phdarreighty <- glm(phd$ahpeighty ~ 
phd$gdpeighty+phd$gdpdelay+phd$numops+phd$shedules+phd$charters+phd$freiters+ph
d$NCF+phd$POBin+phd$windsped+phd$visiblty+phd$qnh,family="binomial",data=phd) 

219. searcharreighty<-step(phdarreighty) 
220. summary(searcharreighty) 
221. probarreighty <- predict(phdarreighty, type = "response") 
222. summary(probarreighty) 

 
 

223. phd.arr.propeighty<- ts(phd$ahpdrate,start=c(2004,1),frequency=365) 
224. phd.arr.probeighty<- ts(probarreighty,start=c(2004,1),frequency=365) 

 
225. par(mfrow=c(1,2)) 
226. plot (phd.arr.propeighty, main = "Proportion of aircraft arrival delay against Time",ylab 

= "Proportion of aircrafts monthly arrival delay") 
227. plot (phd.arr.probeighty, main = "Probability of aircraft arrival delay (50 percent) 

against Time",ylab = "Estimated probability of arrival delay") 
 
 

228. # STOCHASTIC FRONTIER MODELING 
 

229. # departure delay analysis 
 

230. # Error Components Frontier (Battese & Coelli 1992), with time effect                                                        
 

231. library(frontier) 
 

232. phddepstochasticTime <- sfa(log(phd$gdpdrate) ~ 
log(phd$ahpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
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ers)+log(phd$NCF)+log(phd$POBout)+log(phd$windsped)+log(phd$visiblty)+log(phd$qn
h),truncNorm = TRUE, timeEffect = TRUE, data=phd) 
 

233. # Error Components Frontier (Battese & Coelli 1992), no time effect 
234. phddepstochasticF <- sfa(log(phd$gdpdrate) ~ 

log(phd$ahpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
ers)+log(phd$NCF)+log(phd$POBout)+log(phd$windsped)+log(phd$visiblty)+log(phd$qn
h),truncNorm = FALSE, timeEffect = TRUE,data=phd) 

235. phddepstochasticT <- sfa(log(phd$gdpdrate) ~ 
log(phd$ahpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
ers)+log(phd$NCF)+log(phd$POBout)+log(phd$windsped)+log(phd$visiblty)+log(phd$qn
h),truncNorm = TRUE, timeEffect = FALSE,data=phd) 

236. summary(phddepstochasticT) 
237. coef(summary(phddepstochasticT),which="ols") 
238. coef(summary(phddepstochasticT),which="grid") 
239. coef(summary(phddepstochasticT),which="mle") 

 
240. phd$depstochastic <- efficiencies(phddepstochasticT, asInData = TRUE) 
241. phd$depstochastic[is.na(phd$depstochastic)] <- 0 
242. # replace(phd$depstochastic, NA, 0) 
243. phd$depstochastic 
244. summary(phd$depstochastic) 
245. mean(phd$depstochastic) 

 
246. # ALternatively returning efficiency estimates 
247. residuals( phddepstochastic ) 
248. phd$residuals <- residuals( phddepstochastic, asInData = TRUE ) 

 
249. # compare the model to a corresponding model without inefficiency 
250. lrtest( phddepstochasticF, phddepstochasticT ) 
251. lrtest( phddepstochasticT ) 
252. # Extract the covariance matrix of the maximum likelihood coefficients of a stochastic 

frontier model 
253. vcov(phddepstochastic) 

 
254. # ARIMA models Analysis of departure delay technical inefficiency 

 
255. phd.dep.stochastic<- ts((1-phd$depstochastic),start=c(2004,1),frequency=365) 

 
256. phd.dep.stocfront <- diff((1-phd.dep.stochastic),1,1) 
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257. plot(phd.dep.stocfront) 
 

258. par(mfrow=c(2,2)) 
259. acf(phd.dep.stocfront, lag.max = NULL,main="ACF for departure TInneffiency", type = 

c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

260. pacf(phd.dep.stocfront, lag.max = NULL,main="PACF for departure TInnefficiency", 
plot = TRUE, na.action = na.fail) 
 

261. acf(phd.dep.stocfront, lag.max = NULL,main="ACF for departure TInneffiency", type = 
c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

262. pacf(phd.dep.stocfront, lag.max = NULL,main="PACF for departure TInneffiency", plot 
= TRUE, na.action = na.fail) 
 

263. fit1<-arima(phd.dep.stocfront,c(1,1,1))  
264. fit2<-arima(phd.dep.stocfront,c(0,1,1))  
265. fit3<-arima(phd.dep.stocfront,c(1,0,1)) 
266. fit4<-arima(phd.dep.stocfront,c(1,1,0)) 

 
267. fit1 
268. fit2 
269. fit3 
270. fit4 

 
271. tsdiag(fit1) 
272. tsdiag(fit2) 
273. tsdiag(fit3) 

 
274. # disaggregated by year 

  
275. year2008depstochasticT <- sfa(log(year2008$gdpdrate) ~ 

log(year2008$ahpdrate)+log(year2008$numops)+log(year2008$shedules)+log(year2008$c
harters)+log(year2008$freiters)+log(year2008$NCF)+log(year2008$POBout)+log(year20
08$windsped)+log(year2008$visiblty)+log(year2008$qnh),truncNorm = FALSE, timeEffect 
= FALSE,data=year2008) 

276. year2008$depstochastic <- efficiencies(year2008depstochasticT, asInData = TRUE) 
277. year2008$depstochastic[is.na(year2008$depstochastic)] <- 0 
278. summary(year2008$depstochastic) 
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279. year  <- c(2004, 2005, 2006, 2007, 2008) 
280. depTE <- c(0.8992, 0.8992, 0.8858, 0.8159, 0.8505) 
281. arrTE <- c(0.8590, 0.7427, 0.8984, 0.8551, 0.8783) 
282. t.test(depTE, arrTE) 
283. plot(depTE~arrTE+year, col = "RED") 

 
284. # arrival delay analysis 

 
285. # Error Components Frontier (Battese & Coelli 1992), with time effect                                                                                                                             
286. phdarrstochasticTime <- sfa(log(phd$ahpdrate) ~ 

log(phd$gdpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
ers)+log(phd$NCF)+log(phd$POBin)+log(phd$windsped)+log(phd$visiblty)+log(phd$qnh)
,truncNorm = TRUE, timeEffect = TRUE, data=phd) 
 

287. # Error Components Frontier (Battese & Coelli 1992), no time effect 
288. phdarrstochasticF <- sfa(log(phd$ahpdrate) ~ 

log(phd$gdpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
ers)+log(phd$NCF)+log(phd$POBin)+log(phd$windsped)+log(phd$visiblty)+log(phd$qnh)
,truncNorm = FALSE, timeEffect = TRUE,data=phd) 

289. phdarrstochasticT <- sfa(log(phd$ahpdrate) ~ 
log(phd$gdpdrate)+log(phd$numops)+log(phd$shedules)+log(phd$charters)+log(phd$freit
ers)+log(phd$NCF)+log(phd$POBin)+log(phd$windsped)+log(phd$visiblty)+log(phd$qnh)
,truncNorm = FALSE, timeEffect = FALSE,data=phd) 

290. summary(phdarrstochasticT) 
291. coef(summary(phdarrstochasticT),which="ols") 
292. coef(summary(phdarrstochasticT),which="grid") 
293. coef(summary(phdarrstochasticT),which="mle") 

 
294. phd$arrstochastic <- efficiencies(phdarrstochasticT, asInData = TRUE) 
295. phd$arrstochastic[is.na(phd$arrstochastic)] <- 0 
296. summary(phd$arrstochastic) 
297. mean(phd$arrstochastic) 

 
 

298. plot(phd$arrstochastic) 
 

299. # ALternatively returning efficiency estimates 
300. residuals( phdarrstochastic ) 
301. phd$arrresiduals <- residuals( phdarrstochastic, asInData = TRUE ) 
302. plot(phd$arrresiduals) 
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303. # compare the model to a corresponding model without inefficiency 
304. lrtest( phdarrstochasticF, phdarrstochasticT ) 
305. lrtest( phdarrstochasticT ) 

 
306. # Extract the covariance matrix of the maximum likelihood coefficients of a stochastic 

frontier model 
307. vcov(phdarrstochasticT) 

 
 

308. # ARIMA models Analysis of arrival delay technical inefficiency 
 

309. phd.arr.stochastic<- ts((1-phd$arrstochastic),start=c(2004,1),frequency=365) 
 

310. phd.arr.stocfront <- diff((1-phd.arr.stochastic),1,1) 
311. plot(phd.arr.stocfront) 

 
312. par(mfrow=c(2,2)) 
313. acf(phd.arr.stocfront, lag.max = NULL,main="ACF for departure TInneffiency", type = 

c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

314. pacf(phd.arr.stocfront, lag.max = NULL,main="PACF for departure TInnefficiency", 
plot = TRUE, na.action = na.fail) 
 

315. acf(phd.arr.stocfront, lag.max = NULL,main="ACF for departure TInneffiency", type = 
c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = 
TRUE) 

316. pacf(phd.arr.stocfront, lag.max = NULL,main="PACF for departure TInneffiency", plot 
= TRUE, na.action = na.fail) 
 

317. fit1<-arima(phd.arr.stocfront,c(1,1,1))  
318. fit2<-arima(phd.arr.stocfront,c(0,1,1))  
319. fit3<-arima(phd.arr.stocfront,c(1,0,1)) 
320. fit4<-arima(phd.arr.stocfront,c(1,1,0)) 

 
321. fit1 
322. fit2 
323. fit3 
324. fit4 
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325. tsdiag(fit1) 
326. tsdiag(fit2) 
327. tsdiag(fit3) 
328. tsdiag(fit4) 

 
329. # disaggregated by year 

 
330. year2004arrstochasticT <- sfa(log(year2004$ahpdrate) ~ 

log(year2004$gdpdrate)+log(year2004$numops)+log(year2004$shedules)+log(year2004$c
harters)+log(year2004$freiters)+log(year2004$NCF)+log(year2004$POBin)+log(year200
4$windsped)+log(year2004$visiblty)+log(year2004$qnh),truncNorm = TRUE, timeEffect = 
TRUE,data=year2004) 

331. year2004$arrstochastic <- efficiencies(year2004arrstochasticT, asInData = TRUE) 
332. year2004$arrstochastic[is.na(year2004$arrstochastic)] <- 0 
333. summary(year2004$arrstochastic) 

 
 

334. # Plots 
 

335. phd.prob.departure<- ts(phd$probdepseventy,start=c(2004,1),frequency=365) 
336. phd.prob.arrival<- ts(phd$probarrsixty,start=c(2004,1),frequency=365) 
337. phd.eff.departure<- ts(phd$depstochastic,start=c(2004,1),frequency=365) 
338. phd.eff.arrival<- ts(phd$arrstochastic,start=c(2004,1),frequency=365) 

 
339. par(mfrow=c(2,2)) 
340. plot (phd.prob.departure, main = "Probability of daily departure delay against 

Time",ylab = "Probability of departure delay") 
341. plot (phd.prob.arrival, main = "Probability of daily arrival delay against Time",ylab = 

"Probability of arrival delay") 
342. plot (phd.eff.departure, main = "Efficiency of daily departure against Time",ylab = 

"Efficiency of departure delay") 
343. plot (phd.eff.arrival, main = "Efficiency of daily arrival against Time",ylab = "Efficiency 

of arrival delay") 
 
 

344. # correlations and  tests between the predicted efficiencies 
345. cor(phd$depstochastic,phd$arrstochastic, use="pairwise", method="pearson") 
346. cor.test(phd$depstochastic,phd$arrstochastic, method="spearman", 

alternative="two.sided") 
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347. # correlations and  tests between the predicted efficiencies and probabilities 
348. cor(phd$probdepseventy,phd$probarrsixty,phd$depstochastic,phd$arrstochastic, 

use="pairwise", method="pearson") 
349. cor.test(phd$depstochastic,phd$arrstochastic, method="spearman", 

alternative="two.sided") 
 

350. attach(warpbreaks) 
351. by(warpbreaks[, 1], phd$year, mean(phd$probdepseventy)) 

 
352. table( phd$year, phd$probdepseventy) 

 
 

353. ## UTILITY DERIVATION 
 

354. phd.dep.ontime <- ts(phd$gdptrate,start=c(2004,1),frequency=365) 
355. phd.arr.ontime <- ts(phd$ahptate,start=c(2004,1),frequency=365) 
356. phd.dep.probseventy <- ts(phd$probdepseventy,start=c(2004,1),frequency=365) 
357. phd.arr.probsixty <- ts(phd$probarrsixty,start=c(2004,1),frequency=365) 

 
 

358. par(mfrow=c(2,2)) 
359. plot (phd.dep.ontime, main = "Proportion of daily departure delay against Time",ylab = 

"Proportion of departure delay") 
360. lines(lowess(phd.dep.ontime), type="o", col = "red",) 
361. plot (phd$gdptrate, phd.dep.probseventy, col = "red", main="A/C OnTime Departure 

Proportions Against Probability", xlab="OnTime Departure Proportions", 
ylab="Probability") 

362. lines(lowess(phd$gdptrate,phd.dep.probseventy), type="o") 
363. plot (phd.arr.ontime, main = "Proportion of daily arrival delay against Time",ylab = 

"Proportion of arrival delay") 
364. lines(lowess(phd.arr.ontime), type="o", col = "red",) 
365. plot (phd$ahptate, phd.arr.probsixty, col = "red", main="A/C OnTime Arrival 

Proportions Against Probability", xlab="OnTime Arrival Proportions", ylab="Probability") 
366. lines(lowess(phd$ahptate,phd.arr.probsixty), type="o") 

 
 

367. ## par(mfrow=c(2,1)) 
368. ## plot (phd$gdptrate, main = "Proportion of daily departure delay against Time",ylab = 

"Proportion of departure delay") 
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369. ## plot (phd$ahptate, main = "Proportion of daily arrival delay against Time",ylab = 
"Proportion of arrival delay") 
 

370. ## ONTIME ASSESSment 
371. # Departure log leads to normalisation producing half-normal 
372. hist(log(phd$gdptrate), seq(0, 5, 1), prob=TRUE, main="Density against Proportion of 

OnTime A/C Departures", xlab="Log of Aircraft ontime arrival proportion") 
373. lines(density(log(phd$gdptrate), bw=1)) 
374. rug(log(phd$gdptrate)) 

 
375. # Arrival log leads to normalisation  
376. hist(log(phd$ahptate), seq(0, 5, 1), prob=TRUE, main="Density against Proportion of 

OnTime A/C Departures", xlab="Log of Aircraft ontime arrival proportion") 
377. lines(density(log(phd$ahptate), bw=1)) 
378. rug(log(phd$ahptate)) 

 
379. ## DElay ASSESSment 
380. # Departure log leads to normalisation producing half-normal 
381. hist(log(phd$gdpdrate), seq(0, 5, 1), prob=TRUE, main="Density against Proportion of 

OnTime A/C Departures", xlab="Log of Aircraft ontime arrival proportion") 
382. lines(density(log(phd$gdpdrate), bw=1)) 
383. rug(log(phd$gdpdrate)) 

 
384. # Arrival log leads to normalisation  
385. hist(log(phd$ahpdrate), seq(0, 5, 1), prob=TRUE, main="Density against Proportion of 

OnTime A/C Departures", xlab="Log of Aircraft ontime arrival proportion") 
386. lines(density(log(phd$ahpdrate), bw=1)) 
387. rug(log(phd$ahpdrate)) 

 
388. ## Distributions  

 
389. #gdpontimeprop <- phd$gdptrate/100 
390. #expgdpontime <- 1-(exp(-gdpontimeprop/mean(gdpontimeprop))) 
391. #Utilitygdpontime <- (gdpontimeprop + phd$depstochastic)^ phd$probdepseventy 

 
392. #t.test(gdpontimeprop, expgdpontime) 
393. #plot(gdpontimeprop, expgdpontime) 
394. #lines(lowess(gdpontimeprop, expgdpontime), type="o", col="RED") 

 
395. #t.test(gdpontimeprop, Utilitygdpontime) 
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396. #plot(gdpontimeprop, Utilitygdpontime) 
397. #lines(lowess(gdpontimeprop, Utilitygdpontime), type="o", col="RED") 

 
398. #plot((rexp(1827, rate=0.8)/0.8)) 

 
399. # Departure utility 

 
400. dailydeputility <- exp(-meaninteractioninverse*(phd$probdepsixty)*(1-

phd$depstochastic)) 
401. averagedailydeputility <- summary(dailydeputility) 
402. averagedailydeputility 

 
403. par(mfrow=c(2,1)) 
404. phd.dep.utility <- ts(dailydeputility,start=c(2004,1),frequency=365) 
405. plot(phd.dep.utility,col = "red", main="Aircraft utility affected by departure delay 

Against Time in Years", xlab="Time in Years", ylab="Logs of utility") 
406. plot(log(phd.dep.utility),col = "red", main="Aircraft utility at departure Against Time in 

Years", xlab="Time in Years", ylab="Logs of utility") 
 

407. # Annualised Departure utility 
 

408. dailydeputility2008 <- exp((-(year2008$probdepsixty)*(1-year2008$depstochastic))) 
409. averagedailydeputility2008 <- summary(dailydeputility2008) 
410. averagedailydeputility2008 

 
411. par(mfrow=c(2,1)) 
412. phd.dep.utility <- ts(dailydeputility,start=c(2004,1),frequency=365) 
413. plot(phd.dep.utility,col = "red", main="Aircraft utility affected by departure delay 

Against Time in Years", xlab="Time in Years", ylab="Logs of utility") 
414. plot(log(phd.dep.utility),col = "red", main="Aircraft utility at departure Against Time in 

Years", xlab="Time in Years", ylab="Logs of utility") 
 
 
 

415. # Arrival utility 
416. lambda = 1.0 
417. dailyarrutility <- exp(-(lambda*(phd$probarrsixty))*(1-phd$arrstochastic)) 
418. averagedailyarrutility <- summary(dailyarrutility) 
419. averagedailyarrutility 
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420. #Annualised Arrival Utilities when lambda =1 

 
421. lambda = 1 
422. dailyarrutility2004 <- exp(-(lambda*(year2004$probarrsixty))*(1-

year2004$arrstochastic)) 
423. averagedailyarrutility2004 <- summary(dailyarrutility2004) 
424. averagedailyarrutility2004 

 
 

425. phd.arr.utility <- ts(dailyarrutility,start=c(2004,1),frequency=365) 
426. plot(phd.arr.utility,col = "red", main="Aircraft utility affected by arrival delay Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
427. plot(log(phd.arr.utility),col = "red", main="Aircraft utility at arrival Against Time in 

Years", xlab="Time in Years", ylab="Logs of utility") 
 
 

428. # Experimental simulations ONE 
429. phd$probdepsixty <- sample(0.6:0.9,1827,rep=T) 

 
430. dailydeputility <- exp(-(phd$probdepsixty)*(1-phd$depstochastic)) 
431. averagedailydeputility <- summary(dailydeputility) 
432. averagedailydeputility 

 
433. par(mfrow=c(2,1)) 
434. phd.dep.utility <- ts(dailydeputility,start=c(2004,1),frequency=365) 
435. plot(log(phd.dep.utility),col = "red", main="Utility when DepProb=(0.6 to 0.9) Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
 
 

436. # Arrival utility 
437. phd$probarrsixty <- sample(0.6:0.9,1827,rep=T) 

 
438. lambda = 1 
439. dailyarrutility <- exp(-(lambda*(phd$probarrsixty)*(1-phd$arrstochastic))) 
440. averagedailyarrutility <- summary(dailyarrutility) 
441. averagedailyarrutility 

 
442. phd.arr.utility <- ts(dailyarrutility,start=c(2004,1),frequency=365) 
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443. plot(log(phd.arr.utility),col = "red", main="Utility when ArrProb=(0.6 to 0.9) Against 
Time in Years", xlab="Time in Years", ylab="Logs of utility") 
 

444. cor(phd.dep.utility, phd.arr.utility) 
445. cor(dailydeputility,dailyarrutility ) 

 
 

446. # Experimental simulations TWO 
447. phd$depstochastic <- sample(0.6:0.9,1827,rep=T) 

 
448. dailydeputility <- exp((-(phd$probdepsixty)*(1-phd$depstochastic))) 
449. averagedailydeputility <- summary(dailydeputility) 
450. averagedailydeputility 

 
451. par(mfrow=c(2,1)) 
452. phd.dep.utility <- ts(dailydeputility,start=c(2004,1),frequency=365) 
453. plot(log(phd.dep.utility),col = "red", main="Utility when DepEff=(0.6 to 0.9) Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
 
 

454. # Arrival utility 
455. phd$arrstochastic <- sample(0.6:0.9,1827,rep=T) 

 
456. lambda = 2.0 
457. dailyarrutility <- exp(-(lambda*(phd$probarrsixty)*(1-phd$arrstochastic))) 
458. averagedailyarrutility <- summary(dailyarrutility) 
459. averagedailyarrutility 

 
460. phd.arr.utility <- ts(dailyarrutility,start=c(2004,1),frequency=365) 
461. plot(log(phd.arr.utility),col = "red", main="Utility when ArrEff=(0.6 to 0.9) Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
462. cor(phd.dep.utility,phd.arr.utility) 

 
463. # Experimental simulations THREE 
464. phd$depstochastic <- sample(0.6:0.9,1827,rep=T) 

 
465. dailydeputility <- exp((-(phd$probdepsixty)*(1-phd$depstochastic))) 
466. averagedailydeputility <- summary(dailydeputility) 
467. averagedailydeputility 

 



168 
 

468. par(mfrow=c(2,1)) 
469. phd.dep.utility <- ts(dailydeputility,start=c(2004,1),frequency=365) 
470. plot(log(phd.dep.utility),col = "red", main="Utility when DepIneff=(0.6 to 0.9) Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
 
 

471. # Arrival utility 
472. phd$arrstochastic <- sample(0.6:0.9,1827,rep=T) 

 
473. lambda = 2.0 
474. dailyarrutility <- exp(-(lambda*(phd$probarrsixty)*(1-phd$arrstochastic))) 
475. averagedailyarrutility <- summary(dailyarrutility) 
476. averagedailyarrutility 

 
477. phd.arr.utility <- ts(dailyarrutility,start=c(2004,1),frequency=365) 
478. plot(log(phd.arr.utility),col = "red", main="Utility when ArrIneff=(0.6 to 0.9) Against 

Time in Years", xlab="Time in Years", ylab="Logs of utility") 
 
 

479. # Experimental simulations FOUR 
 

480. # Arrival utility 
 

481. phd$arrstochastic <- sample(0.1:0.4,1827,rep=T) 
 

482. lambda <- 1.1 
483. dailyarrutility <- exp(-(lambda*(phd$probarrsixty)*(1-phd$arrstochastic))) 
484. averagedailyarrutility <- summary(dailyarrutility) 
485. averagedailyarrutility 

 
486. # some plots 

 
487. lambda <- c(1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0) 
488. utilityEIA <- 

c(0.9065,0.8982,0.8901,0.8821,0.8743,0.8667,0.8592,0.8518,0.8446,0.8375,0.8306) 
489. utilityHigheff <- 

c(0.8687,0.8569,0.8455,0.8342,0.8232,0.8124,0.8018,0.7914,0.7812,0.7713,0.7615) 
 

490. UtilityLinestLe <- lm(utilityEIA~lambda) 
491. UtilityLinestHe <- lm(utilityHigheff~lambda) 
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492. cor(utilityEIA,utilityHigheff)                  # Establishing the correlation 
 

493. par(mfrow=c(2,1)) 
 

494. plot(lambda, utilityEIA, main="EIA Utility with Cost Ratio",col="red", sub="(EIA 
efficiency)",xlab="Cost ratio", ylab="Airport Utility") 

495. #abline(E42MaxUtilityLineL) 
 

496. plot(lambda,utilityHigheff, main="Airport Utility with Cost Ratio",col="red", 
sub="(High scenario Airport efficiency)", xlab="Cost ratio", ylab="Airport Utility") 

497. #abline(E42MaxUtilityLineH) 
 

498. t.test(utilityLowIneff,utilityHighIneff)    # H0: E1MaximumFinUtilityL = 
E1MaximumFinUtilityH 

 
499.  

 
500. var.test(utilityLowIneff,utilityHighIneff)  # H0: var(E1MaximumFinUtilityL) / 

var(E1MaximumFinUtilityH) =1 
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Appendix E:  User-Interface for the Stochastic Optimisation Model 
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Appendix F:  Code in C# for the Stochastic Optimisation Model 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using System.Collections; 
 
namespace UtilityOptimization.Service 
{ 
    public class Scenario 
    { 
        public int ScenarioNumber { get; set; } 
        public float ScenarioProbability1 { get; set; } 
        public float ScenarioProbability2 { get; set; } 
        public IList<DayDetail> DayDetails { get; set; } 
        public double VarianceAD { get; set; } 
        public double VarianceGD { get; set; } 
        public double VarianceATDT { get; set; } 
        public double ScenarioUtility { get; set; } 
 
        private IList<float> ads; 
        private IList<float> gds; 
        private IList<float> ats; 
        private IList<float> dts; 
 
        public Scenario() 
        { 
            ads = new List<float>(); 
            gds = new List<float>(); 
            ats = new List<float>(); 
            dts = new List<float>(); 
        } 
 
        private double ComputeSumOfVariables(IList<float> variables) 
        { 
            double sum = 0.0; 
            foreach (float variable in variables) 
            { 
                sum += variable; 
            } 
            return sum; 
        } 
 
        private double ComputeAverageOfVariables(IList<float> variables) 
        { 
            return ComputeSumOfVariables(variables) / variables.Count; 
        } 
 
        public double ComputeVarianceOfVariables(IList<float> variables) 
        { 
            double sumofsquares = 0.0; 
            double average = ComputeAverageOfVariables(variables); 
            foreach (float variable in variables) 
            { 
                sumofsquares += Math.Pow(variable - average, 2); 
            } 
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            return sumofsquares / (variables.Count - 1); 
        } 
 
        public double ComputeCovarianceOfVariables(IList<float> variables1, 
IList<float> variables2) 
        { 
            if (variables1.Count != variables2.Count) 
                throw new Exception("Variables should have the same number of 
elements"); 
            else 
            { 
                double sum = 0.0; 
                double variables1average = 
ComputeAverageOfVariables(variables1); 
                double variables2average = 
ComputeAverageOfVariables(variables2); 
 
                for (int i = 0; i < variables1.Count; i++) 
                { 
                    sum += (variables1[i] - variables1average) * 
(variables2[i] - variables2average); 
                } 
                return sum / variables1.Count; 
            } 
        } 
 
        public void ComputeVarianceAD() 
        { 
            foreach (DayDetail day in DayDetails) 
                ads.Add(day.AD); 
            VarianceAD = ComputeVarianceOfVariables(ads); 
        } 
 
        public void ComputeVarianceGD() 
        { 
            foreach (DayDetail day in DayDetails) 
                gds.Add(day.GD); 
            VarianceGD = ComputeVarianceOfVariables(gds); 
        } 
 
        public void ComputeVarianceATDT() 
        { 
            foreach (DayDetail day in DayDetails) 
                ats.Add(day.AT); 
            foreach (DayDetail day in DayDetails) 
                dts.Add(day.DT); 
            VarianceATDT = (ComputeVarianceOfVariables(ats) + 
ComputeVarianceOfVariables(dts) + (2 * ComputeCovarianceOfVariables(ats, 
dts))); 
        } 
 
        public double ComputeDayUtility(DayDetail day, int cg, int ca) 
        { 
            double util1 = Math.Exp((day.AT + day.DT) / VarianceATDT); 
            double util2 = Math.Exp(-((cg/ca)*(day.AD/VarianceAD))); 
            double util3 = Math.Exp(-(day.GD / VarianceGD)); 
            return (util1 - util2 - util3); 
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        } 
 
        public double ComputeScenarioUtility(int cg, int ca) 
        { 
            double totalDayUtility = 0.0; 
             
            foreach (DayDetail day in DayDetails) 
            { 
                totalDayUtility += ComputeDayUtility(day, cg, ca); 
            } 
            return ((ScenarioProbability1 * totalDayUtility) + 
(ScenarioProbability2 * totalDayUtility)); 
        } 
 
    } 
} 

 
 

using System; 
 
namespace UtilityOptimization.Service 
{ 
    public class DayDetail 
    { 
        public int DayNumber { get; set; } 
        public float AT { get; set; } 
        public float DT { get; set; } 
        public float AD { get; set; } 
        public float GD { get; set; } 
 
        public DayDetail(int no, float at, float dt) 
        { 
            DayNumber = no; 
            AT = at; 
            DT = dt; 
            AD = (float)Math.Round((1 - at),2); 
            GD = (float)Math.Round((1 - dt),2); 
        } 
    } 
} 
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using System; 
using System.Collections.Generic; 
 
namespace UtilityOptimization.Service 
{ 
    public class Utility 
    { 
        public int NumberOfScenarios { get; set; } 
        public int NumberOfDaysPerScenario { get; set; } 
        public int CostOfAirDelay { get; set; } 
        public int CostOfGroundDelay { get; set; } 
        public IList<Scenario> Scenarios { get; set; } 
    } 
} 
 

 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Windows.Forms; 
 
namespace UtilityOptimization 
{ 
    static class Program 
    { 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        [STAThread] 
        static void Main() 
        { 
            Application.EnableVisualStyles(); 
            Application.SetCompatibleTextRenderingDefault(false); 
            frmUtilityOptimisation utilityOptimisation = new 
frmUtilityOptimisation(); 
            Application.Run(utilityOptimisation); 
        } 
    } 
} 
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namespace UtilityOptimization 
{ 
    partial class frmScenarioDetails 
    { 
        /// <summary> 
        /// Required designer variable. 
        /// </summary> 
        private System.ComponentModel.IContainer components = null; 
 
        /// <summary> 
        /// Clean up any resources being used. 
        /// </summary> 
        /// <param name="disposing">true if managed resources should be 
disposed; otherwise, false.</param> 
        protected override void Dispose(bool disposing) 
        { 
            if (disposing && (components != null)) 
            { 
                components.Dispose(); 
            } 
            base.Dispose(disposing); 
        } 
 
        #region Windows Form Designer generated code 
 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.groupBox2 = new System.Windows.Forms.GroupBox(); 
            this.btnSaveScenarioDetails = new System.Windows.Forms.Button(); 
            this.btnAddDayDetails = new System.Windows.Forms.Button(); 
            this.txtScenarioProbability2 = new 
System.Windows.Forms.TextBox(); 
            this.label3 = new System.Windows.Forms.Label(); 
            this.txtScenarioProbability1 = new 
System.Windows.Forms.TextBox(); 
            this.label1 = new System.Windows.Forms.Label(); 
            this.dgvScenarioDetails = new 
System.Windows.Forms.DataGridView(); 
            this.groupBox2.SuspendLayout(); 
            
((System.ComponentModel.ISupportInitialize)(this.dgvScenarioDetails)).BeginIn
it(); 
            this.SuspendLayout(); 
            //  
            // groupBox2 
            //  
            this.groupBox2.Controls.Add(this.btnSaveScenarioDetails); 
            this.groupBox2.Controls.Add(this.btnAddDayDetails); 
            this.groupBox2.Controls.Add(this.txtScenarioProbability2); 
            this.groupBox2.Controls.Add(this.label3); 
            this.groupBox2.Controls.Add(this.txtScenarioProbability1); 
            this.groupBox2.Controls.Add(this.label1); 
            this.groupBox2.Controls.Add(this.dgvScenarioDetails); 
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            this.groupBox2.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 9F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, 
((byte)(0))); 
            this.groupBox2.Location = new System.Drawing.Point(12, 23); 
            this.groupBox2.Name = "groupBox2"; 
            this.groupBox2.Size = new System.Drawing.Size(512, 377); 
            this.groupBox2.TabIndex = 1; 
            this.groupBox2.TabStop = false; 
            this.groupBox2.Text = "  Scenario Details  "; 
            //  
            // btnSaveScenarioDetails 
            //  
            this.btnSaveScenarioDetails.DialogResult = 
System.Windows.Forms.DialogResult.OK; 
            this.btnSaveScenarioDetails.Enabled = false; 
            this.btnSaveScenarioDetails.Font = new 
System.Drawing.Font("Microsoft Sans Serif", 8.25F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
((byte)(0))); 
            this.btnSaveScenarioDetails.Location = new 
System.Drawing.Point(352, 329); 
            this.btnSaveScenarioDetails.Name = "btnSaveScenarioDetails"; 
            this.btnSaveScenarioDetails.Size = new System.Drawing.Size(132, 
32); 
            this.btnSaveScenarioDetails.TabIndex = 4; 
            this.btnSaveScenarioDetails.Text = "&Save Scenario Details"; 
            this.btnSaveScenarioDetails.UseVisualStyleBackColor = true; 
            this.btnSaveScenarioDetails.Click += new 
System.EventHandler(this.btnSaveScenarioDetails_Click); 
            //  
            // btnAddDayDetails 
            //  
            this.btnAddDayDetails.Font = new System.Drawing.Font("Microsoft 
Sans Serif", 8.25F, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.btnAddDayDetails.Location = new System.Drawing.Point(214, 
329); 
            this.btnAddDayDetails.Name = "btnAddDayDetails"; 
            this.btnAddDayDetails.Size = new System.Drawing.Size(132, 32); 
            this.btnAddDayDetails.TabIndex = 3; 
            this.btnAddDayDetails.Text = "&Add Day Details"; 
            this.btnAddDayDetails.UseVisualStyleBackColor = true; 
            this.btnAddDayDetails.Click += new 
System.EventHandler(this.btnAddDayDetails_Click); 
            //  
            // txtScenarioProbability2 
            //  
            this.txtScenarioProbability2.Font = new 
System.Drawing.Font("Microsoft Sans Serif", 8.25F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
((byte)(0))); 
            this.txtScenarioProbability2.Location = new 
System.Drawing.Point(414, 31); 
            this.txtScenarioProbability2.Name = "txtScenarioProbability2"; 
            this.txtScenarioProbability2.Size = new System.Drawing.Size(70, 
20); 
            this.txtScenarioProbability2.TabIndex = 2; 
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            //  
            // label3 
            //  
            this.label3.AutoSize = true; 
            this.label3.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 8.25F, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.label3.Location = new System.Drawing.Point(271, 34); 
            this.label3.Name = "label3"; 
            this.label3.Size = new System.Drawing.Size(109, 13); 
            this.label3.TabIndex = 18; 
            this.label3.Text = "Scenario Probability 2"; 
            //  
            // txtScenarioProbability1 
            //  
            this.txtScenarioProbability1.Font = new 
System.Drawing.Font("Microsoft Sans Serif", 8.25F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
((byte)(0))); 
            this.txtScenarioProbability1.Location = new 
System.Drawing.Point(163, 34); 
            this.txtScenarioProbability1.Name = "txtScenarioProbability1"; 
            this.txtScenarioProbability1.Size = new System.Drawing.Size(70, 
20); 
            this.txtScenarioProbability1.TabIndex = 1; 
            //  
            // label1 
            //  
            this.label1.AutoSize = true; 
            this.label1.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 8.25F, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.label1.Location = new System.Drawing.Point(17, 37); 
            this.label1.Name = "label1"; 
            this.label1.Size = new System.Drawing.Size(109, 13); 
            this.label1.TabIndex = 16; 
            this.label1.Text = "Scenario Probability 1"; 
            //  
            // dgvScenarioDetails 
            //  
            this.dgvScenarioDetails.AllowUserToAddRows = false; 
            this.dgvScenarioDetails.AllowUserToDeleteRows = false; 
            this.dgvScenarioDetails.AllowUserToResizeColumns = false; 
            this.dgvScenarioDetails.AllowUserToResizeRows = false; 
            this.dgvScenarioDetails.ColumnHeadersHeightSizeMode = 
System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize; 
            this.dgvScenarioDetails.Location = new System.Drawing.Point(20, 
68); 
            this.dgvScenarioDetails.Name = "dgvScenarioDetails"; 
            this.dgvScenarioDetails.ReadOnly = true; 
            this.dgvScenarioDetails.RowHeadersWidthSizeMode = 
System.Windows.Forms.DataGridViewRowHeadersWidthSizeMode.DisableResizing; 
            this.dgvScenarioDetails.Size = new System.Drawing.Size(464, 244); 
            this.dgvScenarioDetails.TabIndex = 0; 
            //  
            // frmScenarioDetails 
            //  
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            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 
            this.ClientSize = new System.Drawing.Size(534, 420); 
            this.Controls.Add(this.groupBox2); 
            this.FormBorderStyle = 
System.Windows.Forms.FormBorderStyle.FixedDialog; 
            this.MaximizeBox = false; 
            this.MinimizeBox = false; 
            this.Name = "frmScenarioDetails"; 
            this.StartPosition = 
System.Windows.Forms.FormStartPosition.CenterScreen; 
            this.Text = "Enter Scenario"; 
            this.Load += new 
System.EventHandler(this.UtilityOptimization_Load); 
            this.groupBox2.ResumeLayout(false); 
            this.groupBox2.PerformLayout(); 
            
((System.ComponentModel.ISupportInitialize)(this.dgvScenarioDetails)).EndInit
(); 
            this.ResumeLayout(false); 
 
        } 
 
        #endregion 
 
        private System.Windows.Forms.GroupBox groupBox2; 
        private System.Windows.Forms.Button btnAddDayDetails; 
        private System.Windows.Forms.TextBox txtScenarioProbability2; 
        private System.Windows.Forms.Label label3; 
        private System.Windows.Forms.TextBox txtScenarioProbability1; 
        private System.Windows.Forms.Label label1; 
        private System.Windows.Forms.Button btnSaveScenarioDetails; 
        private System.Windows.Forms.DataGridView dgvScenarioDetails; 
    } 

} 
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namespace UtilityOptimization 
{ 
    partial class frmUtilityOptimisation 
    { 
        /// <summary> 
        /// Required designer variable. 
        /// </summary> 
        private System.ComponentModel.IContainer components = null; 
 
        /// <summary> 
        /// Clean up any resources being used. 
        /// </summary> 
        /// <param name="disposing">true if managed resources should be 
disposed; otherwise, false.</param> 
        protected override void Dispose(bool disposing) 
        { 
            if (disposing && (components != null)) 
            { 
                components.Dispose(); 
            } 
            base.Dispose(disposing); 
        } 
 
        #region Windows Form Designer generated code 
 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.groupBox1 = new System.Windows.Forms.GroupBox(); 
            this.btnEnterScenarioDetails = new System.Windows.Forms.Button(); 
            this.btnSetParameters = new System.Windows.Forms.Button(); 
            this.txtCostOfGroundDelay = new System.Windows.Forms.TextBox(); 
            this.label4 = new System.Windows.Forms.Label(); 
            this.txtNumberOfScenarios = new System.Windows.Forms.TextBox(); 
            this.txtNumberOfDaysPerScenario = new 
System.Windows.Forms.TextBox(); 
            this.txtCostOfAirDelay = new System.Windows.Forms.TextBox(); 
            this.label3 = new System.Windows.Forms.Label(); 
            this.label2 = new System.Windows.Forms.Label(); 
            this.label1 = new System.Windows.Forms.Label(); 
            this.groupBox2 = new System.Windows.Forms.GroupBox(); 
            this.btnComputeResults = new System.Windows.Forms.Button(); 
            this.dgvScenarioDetails = new 
System.Windows.Forms.DataGridView(); 
            this.groupBox3 = new System.Windows.Forms.GroupBox(); 
            this.lblMaxScenario = new System.Windows.Forms.Label(); 
            this.dgvResults = new System.Windows.Forms.DataGridView(); 
            this.groupBox1.SuspendLayout(); 
            this.groupBox2.SuspendLayout(); 
            
((System.ComponentModel.ISupportInitialize)(this.dgvScenarioDetails)).BeginIn
it(); 
            this.groupBox3.SuspendLayout(); 
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((System.ComponentModel.ISupportInitialize)(this.dgvResults)).BeginInit(); 
            this.SuspendLayout(); 
            //  
            // groupBox1 
            //  
            this.groupBox1.Controls.Add(this.btnEnterScenarioDetails); 
            this.groupBox1.Controls.Add(this.btnSetParameters); 
            this.groupBox1.Controls.Add(this.txtCostOfGroundDelay); 
            this.groupBox1.Controls.Add(this.label4); 
            this.groupBox1.Controls.Add(this.txtNumberOfScenarios); 
            this.groupBox1.Controls.Add(this.txtNumberOfDaysPerScenario); 
            this.groupBox1.Controls.Add(this.txtCostOfAirDelay); 
            this.groupBox1.Controls.Add(this.label3); 
            this.groupBox1.Controls.Add(this.label2); 
            this.groupBox1.Controls.Add(this.label1); 
            this.groupBox1.Location = new System.Drawing.Point(13, 13); 
            this.groupBox1.Name = "groupBox1"; 
            this.groupBox1.Size = new System.Drawing.Size(307, 267); 
            this.groupBox1.TabIndex = 0; 
            this.groupBox1.TabStop = false; 
            this.groupBox1.Text = "  General Details  "; 
            //  
            // btnEnterScenarioDetails 
            //  
            this.btnEnterScenarioDetails.Enabled = false; 
            this.btnEnterScenarioDetails.Location = new 
System.Drawing.Point(148, 216); 
            this.btnEnterScenarioDetails.Name = "btnEnterScenarioDetails"; 
            this.btnEnterScenarioDetails.Size = new System.Drawing.Size(128, 
28); 
            this.btnEnterScenarioDetails.TabIndex = 6; 
            this.btnEnterScenarioDetails.Text = "&Enter Scenario Details"; 
            this.btnEnterScenarioDetails.UseVisualStyleBackColor = true; 
            this.btnEnterScenarioDetails.Click += new 
System.EventHandler(this.btnEnterScenarioDetails_Click); 
            //  
            // btnSetParameters 
            //  
            this.btnSetParameters.Location = new System.Drawing.Point(35, 
216); 
            this.btnSetParameters.Name = "btnSetParameters"; 
            this.btnSetParameters.Size = new System.Drawing.Size(96, 28); 
            this.btnSetParameters.TabIndex = 5; 
            this.btnSetParameters.Text = "&Set Parameters"; 
            this.btnSetParameters.UseVisualStyleBackColor = true; 
            this.btnSetParameters.Click += new 
System.EventHandler(this.btnSetParameters_Click); 
            //  
            // txtCostOfGroundDelay 
            //  
            this.txtCostOfGroundDelay.Location = new 
System.Drawing.Point(210, 160); 
            this.txtCostOfGroundDelay.Name = "txtCostOfGroundDelay"; 
            this.txtCostOfGroundDelay.Size = new System.Drawing.Size(66, 20); 
            this.txtCostOfGroundDelay.TabIndex = 4; 
            //  
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            // label4 
            //  
            this.label4.AutoSize = true; 
            this.label4.Location = new System.Drawing.Point(25, 166); 
            this.label4.Name = "label4"; 
            this.label4.Size = new System.Drawing.Size(108, 13); 
            this.label4.TabIndex = 6; 
            this.label4.Text = "Cost of Ground Delay"; 
            //  
            // txtNumberOfScenarios 
            //  
            this.txtNumberOfScenarios.Location = new 
System.Drawing.Point(210, 40); 
            this.txtNumberOfScenarios.Name = "txtNumberOfScenarios"; 
            this.txtNumberOfScenarios.Size = new System.Drawing.Size(66, 20); 
            this.txtNumberOfScenarios.TabIndex = 1; 
            //  
            // txtNumberOfDaysPerScenario 
            //  
            this.txtNumberOfDaysPerScenario.Location = new 
System.Drawing.Point(210, 79); 
            this.txtNumberOfDaysPerScenario.Name = 
"txtNumberOfDaysPerScenario"; 
            this.txtNumberOfDaysPerScenario.Size = new 
System.Drawing.Size(66, 20); 
            this.txtNumberOfDaysPerScenario.TabIndex = 2; 
            //  
            // txtCostOfAirDelay 
            //  
            this.txtCostOfAirDelay.Location = new System.Drawing.Point(210, 
119); 
            this.txtCostOfAirDelay.Name = "txtCostOfAirDelay"; 
            this.txtCostOfAirDelay.Size = new System.Drawing.Size(66, 20); 
            this.txtCostOfAirDelay.TabIndex = 3; 
            //  
            // label3 
            //  
            this.label3.AutoSize = true; 
            this.label3.Location = new System.Drawing.Point(25, 122); 
            this.label3.Name = "label3"; 
            this.label3.Size = new System.Drawing.Size(85, 13); 
            this.label3.TabIndex = 2; 
            this.label3.Text = "Cost of Air Delay"; 
            //  
            // label2 
            //  
            this.label2.AutoSize = true; 
            this.label2.Location = new System.Drawing.Point(25, 82); 
            this.label2.Name = "label2"; 
            this.label2.Size = new System.Drawing.Size(136, 13); 
            this.label2.TabIndex = 1; 
            this.label2.Text = "Number of Days / Scenario"; 
            //  
            // label1 
            //  
            this.label1.AutoSize = true; 
            this.label1.Location = new System.Drawing.Point(25, 43); 
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            this.label1.Name = "label1"; 
            this.label1.Size = new System.Drawing.Size(106, 13); 
            this.label1.TabIndex = 0; 
            this.label1.Text = "Number of Scenarios"; 
            //  
            // groupBox2 
            //  
            this.groupBox2.Controls.Add(this.btnComputeResults); 
            this.groupBox2.Controls.Add(this.dgvScenarioDetails); 
            this.groupBox2.Location = new System.Drawing.Point(355, 13); 
            this.groupBox2.Name = "groupBox2"; 
            this.groupBox2.Size = new System.Drawing.Size(585, 267); 
            this.groupBox2.TabIndex = 1; 
            this.groupBox2.TabStop = false; 
            this.groupBox2.Text = "  Scenario Details"; 
            //  
            // btnComputeResults 
            //  
            this.btnComputeResults.Enabled = false; 
            this.btnComputeResults.Location = new System.Drawing.Point(444, 
226); 
            this.btnComputeResults.Name = "btnComputeResults"; 
            this.btnComputeResults.Size = new System.Drawing.Size(104, 28); 
            this.btnComputeResults.TabIndex = 1; 
            this.btnComputeResults.Text = "&Compute Results"; 
            this.btnComputeResults.UseVisualStyleBackColor = true; 
            this.btnComputeResults.Click += new 
System.EventHandler(this.btnComputeResults_Click); 
            //  
            // dgvScenarioDetails 
            //  
            this.dgvScenarioDetails.AllowUserToAddRows = false; 
            this.dgvScenarioDetails.AllowUserToDeleteRows = false; 
            this.dgvScenarioDetails.ColumnHeadersHeightSizeMode = 
System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize; 
            this.dgvScenarioDetails.Location = new System.Drawing.Point(23, 
30); 
            this.dgvScenarioDetails.Name = "dgvScenarioDetails"; 
            this.dgvScenarioDetails.ReadOnly = true; 
            this.dgvScenarioDetails.Size = new System.Drawing.Size(540, 190); 
            this.dgvScenarioDetails.TabIndex = 0; 
            //  
            // groupBox3 
            //  
            this.groupBox3.Controls.Add(this.lblMaxScenario); 
            this.groupBox3.Controls.Add(this.dgvResults); 
            this.groupBox3.Location = new System.Drawing.Point(13, 286); 
            this.groupBox3.Name = "groupBox3"; 
            this.groupBox3.Size = new System.Drawing.Size(927, 267); 
            this.groupBox3.TabIndex = 2; 
            this.groupBox3.TabStop = false; 
            this.groupBox3.Text = "  Results"; 
            //  
            // lblMaxScenario 
            //  
            this.lblMaxScenario.AutoSize = true; 
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            this.lblMaxScenario.Font = new System.Drawing.Font("Microsoft 
Sans Serif", 9F, System.Drawing.FontStyle.Bold, 
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            this.lblMaxScenario.Location = new System.Drawing.Point(489, 
240); 
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            //  
            // dgvResults 
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            this.dgvResults.Size = new System.Drawing.Size(887, 206); 
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            //  
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            //  
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            this.StartPosition = 
System.Windows.Forms.FormStartPosition.CenterScreen; 
            this.Text = "ATM Stochastic Optimization Model ~~~~~ by Wesonga 
Ronald, PhD Statistics (Statistical Computing) ~~~~~"; 
            this.Load += new 
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            this.groupBox1.PerformLayout(); 
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            this.ResumeLayout(false); 
 
        } 
 
        #endregion 
 
        private System.Windows.Forms.GroupBox groupBox1; 
        private System.Windows.Forms.TextBox txtNumberOfScenarios; 
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        private System.Windows.Forms.TextBox txtNumberOfDaysPerScenario; 
        private System.Windows.Forms.TextBox txtCostOfAirDelay; 
        private System.Windows.Forms.Label label3; 
        private System.Windows.Forms.Label label2; 
        private System.Windows.Forms.Label label1; 
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        private System.Windows.Forms.Label label4; 
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        private System.Windows.Forms.Button btnSetParameters; 
        private System.Windows.Forms.GroupBox groupBox2; 
        public System.Windows.Forms.DataGridView dgvScenarioDetails; 
        private System.Windows.Forms.Button btnComputeResults; 
        private System.Windows.Forms.GroupBox groupBox3; 
        private System.Windows.Forms.DataGridView dgvResults; 
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