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But the values of deflection obtained using the approximate method are very high compared to 
the values obtained using exact method (some times up to 350% higher). This shows that this 
approximate method over-estimates the deflection compared to the exact method. This variation 
is possibly due to the assumed mathematical relationship between the deflection coefficients and 
the coefficients of the Airy stress function in the approximate method.  
 
4.0 CONCLUSIONS 
Large deflection of thin rectangular plates subjected distributed lateral line loads have 
been mathematically studied by assuming approximate cosine polynomial function in the y 
direction. Results obtained has been analysed and discussed in comparison with the exact 
method, leading to the following conclusions; 
 

i. The approximate method generally over-estimates plate behaviour for the same load. 
However complex it may be, the exact method is more accurate but the approximate 
method significantly reduces the complexity of the solution albeit with loss of accuracy. 
The approximate method therefore can be adopted where accuracy is not very critical 
since it gives higher values. 

ii. Although mathematical computer softwares are available to solve load-deflection  
equations, it is still difficult to get realistic solutions for higher number of coefficients. 
Good engineering judgment is needed to ascertain accuracy of software output. 

iii. The approximate cosine polynomial method does converge fast enough for deflections.  
 

5.0 REFERENCES 
Bskker, M.C.M., Rosmanit, M. and Hofmeyer, H. (2008), ‘Approximate large-deflection  
analysis of simply supported rectangular plates under transverse loading using plate post-buckling 

solutions’, Thin-walled Structures, Vol 46, pp 1224-1235. 
Ji-Huan He (2003), ‘A Largrangian for Von Karman equations of large-deflection problem of thin 

circular plate’,Applied Mathematics and Computations, Vol. 143, pp 543-549. 
Little, G.H. (1999a), ‘Large-deflection of rectangular plates with transverse edges remaining 

straight’, Computers and Structures, Vol 71, pp 353-357. 
Little, G.H. (1999b), ‘Efficient large-deflection analysis of rectangular plates with general 

transverse form of displacement’, Computers and structures, Vol. 71, pp 333-352. 
Radoslav, Pavazza (2000), ‘An approximate solution for thin rectangular orthotropic/Isotropic 

strips under tension by line loads’, International Journal of Solids and structures, Vol 137, 
pp 4353-4375. 

Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of plates and shells, 2nd ed. 
McGraw-Hill, New York, London, Syhney. 

Wang, Defu and El-Sheikh, A.I. (2005), ‘Large-deflection mathematical analysis of rectangular 
plates’, Journal of Engineering Mechanics, Vol 131, Issue 8, pp 809-821. 

 



Okodi, Ziraba and Mwakali 

423 

 

Exact Large Deflection Analysis of Thin Rectangular Plates under Dis-
tributed Lateral Line Load 

 
Allan Okodi1, Yasin N. Ziraba2, Jackson A. Mwakali 3 

 
1Graduate Student, Faculty of Technology, Makerere University, P. O. Box 7062, 

Kampala, Uganda 
2Senior Lecturer, Faculty of Technology, Makerere University, P. O. Box 7062, Kampala, 

Uganda 
Corresponding author email: ynziraba@tech.mak.ac.ug 

3Professor, Faculty of Technology, Makerere University, P. O. Box 7062, Kampala, Uganda 
 
ABSTRACT 
Research on large deflection of thin rectangular plates to date has focused on plates under uni-
formly distributed load. There is need to extend the theory to other forms of loads that are en-
countered by practicing engineers. Exact analysis of large-deflection of thin rectangular plates 
under distributed lateral line-load is presented in this paper. The analysis is based on solving 
Von Kármán equations, which relate lateral deflection to applied load and stress. The exact 
solution is one where the load, deflection, and Airy stress functions are represented by double 
Fourier series and both x and y coordinate axes are along the plate edges. The functions are 
substituted into the Von Kármán equations to get third degree polynomials describing rela-
tionships between load and deflection coefficients. The resulting polynomials are solved us-
ing MATLAB function solver, fsolve to get defections caused by different loads. Results are 
plotted to show the trends of relationships between loads and deflections, and deflections and 
number of coefficients.  
 
Keywords: Airy Stress; Exact analysis, Large deflection; Line load; Von Kármán equations. 
 
1.0 INTRODUCTION 
Rectangular plates have found wide application in the construction industry since the emer-
gence of high strength materials. The high strength of these materials enable thin sections to 
be used to support large loads even while undergoing large deflections, thus calling for pre-
cise methods to analyze their behaviour. Attempts at exact solutions were successfully made 
by Levy (1941) and Levy and Greenman (1942) but the outcome are complex mathematical 
procedures based on solution of Von Kármán equations (equations 1a,1b) that are difficult to 
use in practice and are only justified in few critical cases (Ugural, 1999). Consequently, exact 
solution of large-deflection of plates for very few cases has been achieved. Solutions for other 
forms of loads apart from few achieved are still needed. 
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w is the deflection of the plate, E is Young’s modulus, t is the plate thickness, q is the distrib-
uted load acting on plate, and D is the plate flexural rigidity such that:  
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. x , y  are the normal stresses in x and y directions, xy  is 

the shear stress in x-y plane. 
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p  denotes in-plane loads. p =0 for lateral loads. 

 
2.0 METHODOLOGY 
This paper presents the findings of a research effort that analyzed the exact behaviour of thin 
rectangular plates subjected to uniformly distributed line-loads acting laterally on the plate 
(Okodi, 2010). The specific objectives were to derive exact load-deflection relationships for 
thin rectangular plates with simply supported and held edges subjected to distributed lateral 
line-loads, to solve the derived exact load-deflection relationship for typical simply supported 
thin rectangular plate. The following steps were followed to achieve the aforementioned ob-
jectives: 

i) Derivation of exact mathematical relationships between load and deflection coeffi-
cients for plates under lateral line-loads,  

ii) Solution of the derived exact relationships to obtain the deflections caused by various 
loads using proprietary software (MATLAB), 

iii) Graphical presentation of results. 
 
2.1 Derivations 
Consider a simply supported rectangular plate loaded as shown in Figure 2. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Simply supported thin plate under distributed lateral line load 
 
Load intensity q is given by: 
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2.2 Assumptions 
i) 2d is infinitesimally small compared to other plate dimensions such that its contribution 

on load distribution is negligible (hence a line load). 
ii) 2c is equal to plate length along the x-axis. That is the load is spread on the entire plate 

length in x direction. 
Fourier series representation of lateral load is given by: 
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 mnq are force coefficients; m, n are counters of the series. By Integration applying the as-
sumptions, it can be shown that: 
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This is the equation for determining the load coefficients for uniformly distributed lateral line 
load. 
 
2.3 Exact large deflection formula for simply supported plate 
The general deflected shape formula is represented by expression 3 below. 

 
(3) 

 

 
mnw ,are deflection coefficients, m,n are counters .This satisfies the boundary conditions for 

the simply supported plate, i.e zero movement at the edges, and no flexural moment along 
edges w = 0 at x = 0, a and y = 0, b. 
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Substituting the expressions for deflection w and Airy stress function F into the Von Kármán 
equations and manipulating leads to the following relationship for simply supported plate. 
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Comparison of terms on the right hands side with those on the left hand side leads to the con-
clusion that mnf  is given by:  
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where the summation includes all products for which r+p=m, r-p = m  and s+q = n, 
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s-q = n  except when r=p=
2
m  and s=q =

2
n . Coefficients rspqb are given by: rspqb =2rspq if 

r=p and s=q. rspqb =2rspq 2222 spqr  if orpr , qs . The sign in this equation is posi-
tive when r+p=m and s-q = n  or r-p = m  and s+q = n, and is negative in all other cases. 
 
Similarly, substituting the expressions for load q, deflection w and Airy stress function F into 
the Von Kármán equations and manipulating leads to the following relationship for the sim-
ply supported plate. 
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Considering the similarity of terms on the left and right hand sides of the equation, we sim-
plify the above expression as below. 
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where the summation includes all products for which r+p=m, r-p = m  and s+q = n, s-q 
= n . Coefficients rspqC are given by: rspqC = 2sprq   if andr ,0 0s , and 

rspqC = 22 sprq   in all other cases. The first sign in this equation is positive when r-p=m 
or s-q = n  (but not at the same time), and is negative otherwise. The second sign is positive if 
r+p =m and q-s = n , or if s+q = n and p-r = m  and is negative in all other cases. 
 
Substituting equation 2c into equation 5b for lateral line load, results in the equation 5c be-
low. 
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This equation presents a direct relationship between the load q and the deflection coefficients. 
Coefficients rsf  in the equation 5c are obtained as presented in equation 4b.  
For a case of one deflection coefficient, the load-deflection relationship for simply supported 
square plate undergoing large deflection would be obtained by substituting 11w , m=n=1, a=b 
into equation 5c to get the expression below. 
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Coefficient rspqC  for various combinations of Airy stress and deflection coefficients are com-
puted and shown in table 1 below. 
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Table 1: Combinations of Airy stress and deflection coefficients 
S/No. 

pqrswf  rspqC  rspqC pqrswf  

1 
2,0f 1,1w  +8 3

11112,0 4
8 wEwf  

2 
0,2f 1,1w  +8 3

11110,2 4
8 wEwf  

3 
2,2f 1,1w  0  

 
Substitute for rspqC pqrswf and collect like terms; 
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This is the load-deflection relationship that is used to determine the deflection coefficients for 
any value of load. Considering only one coefficient of deflection, the deflection at the centre 
is the equal to the coefficient. This expression has been solved by computer software (MAT-
LAB) for 1mx1m steel of 1mm thickness. Similarly the load-deflection equations for 3, 5, 7 
and 9 deflection coefficients have been derived and solved. 
  
2.4 Exact large deflection formula for held plates    
Held plates are prevented from both in-plane and out-of-plane movement at the edge supports 
although rotation about the supports is permitted. This condition introduces additional re-
straints to the case of simply supported edges since the in-pane displacement is prevented 
along the edges (Timoshenko and Woinowsky-Krieger, 1959). This additional restraint is ca-
tered for by introducing the following displacement expressions. 
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The in-plane displacement in the x-direction along the edges x=0 and x=a is: 
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The values of xp  and yp  are now introduced into the expanded Airy stress function (equa-
tion 1c) to get expression for F shown below. 
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Using the same procedure, the following relationship between load and deflection coefficients 
is derived for held plates. 
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By substituting the expression for mnq  for lateral line load (equation 2c) into equation 8a, the 
relationship between load and deflection coefficients is established for held plates. 
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3.0 RESULTS 
The result for 1mx1m simply supported steel plate of 1mm thickness is presented in Table2 
below. 

Table 2: Showing exact deflections for various numbers of terms 
Deflection  w(mm) for different numbers of terms  Load 

(N) 1 term  3 terms 5 terms 7 terms 9 terms 
0 0 0 0 0 0 
1 0.3343 0.3248 0.3253 0.3262 0.3289 
3 0.8397 0.8119 0.813 0.8161 0.8351 
5 1.1784 1.1362 1.1371 1.1432 1.184 
7 1.4314 1.3772 1.3782 1.3871 1.4512 
9 1.6354 1.5705 1.5719 1.5837 1.6746 

 
From Table2, the deflections are seen to increase with load as expected. The results have been 
plotted to show the trend of deflection with number of coefficients (Figure 3), and to show the 
trend of deflection with load (Figure 4). 
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Figure 1: Plot of exact deflections against number of terms 

 

The plot of deflection against number of coefficients or terms (using results of 1N load) in 
Figure 3 above shows the following: 
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a) The value of deflection is highest for one term (2.84% higher than the lowest), 
b) The value is lowest at three terms (2.84% lower than value at one term), 
c) The value at five terms is 2.69% lower than the highest but 0.15% higher than the value 

three terms, which is the lowest, 
d) The value at seven terms is 2.42% lower than the highest but 0.27% higher than the value 

at five terms that precedes it. 
e) The value at nine terms is 1.6% lower than the highest value but 0.8% higher than the 

value at seven terms. 
The plot further indicates that deflections fall steeply when the number of terms is increased 
from one to three. The deflections thereon increase with number of terms albeit at low gradi-
ent. The fall in the value of deflection when the number of terms is increased from one to 
three and the rise there-on is in-keeping with the results obtained by other researchers who 
used this method to study uniformly loaded plates. However the results of this research show 
that the deflections continue to rise at low gradient with increasing number of coefficients for 
at least up to the ninth term. This shows that convergence is not as fast although it could be 
possible at higher terms not considered in this research. 
 

 

Figure 2: Plot of load against exact deflections 
 
The plot of load against deflection (Figure 4) indicates that deflections increase non-linearly 
with load. This is in-keeping with the theory of large deflection and compares well with re-
sults obtained by Wang and El-Sheikh (2005) for uniformly loaded plates. 
 
4.0 CONCLUSIONS    
Large deflection of thin rectangular plates subjected distributed lateral line loads have 
been mathematically studies using the exact method proposed by Timoshenko. Results 
obtained have been analysed and discussed leading to the following conclusions; 
i. Realistic results can be got using relatively simple computer softwares such to-

solve the final load-deflection polynomials hence simplifying the solution signifi-
cantly.  

ii. Although mathematical computer softwares are available to solve load-deflection equa-
tions, it is still difficult to get realistic solutions for higher number of coefficients. Good 
engineering judgment is needed to ascertain accuracy of software output. 
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