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ABSTRACT

Climate affects road deterioration, vehicle operating costs, road safety and the environment.
Current and past pavement design guides and engineering models assume a static climate
whose variability can be determined from past data. This fixed climate assumptions is often
used in road management decision support models such as the Highway Design and Man-
agement system (HDM-4) to simulate future behaviour of road sections and consequently in-
form long-term road maintenance strategies and policies. Contrary to the assumption of a
static climate in road management approaches, observations over the last 40 or 50 years show
increasing trend in global warming. This raises the possibility that the severity and frequency
of pavement defects may be altered leading to premature pavement deterioration and in-
creased costs of managing and using roads. As a consequence, current road management
strategies and policies may not offer sufficient resilience to increased frequency of future ex-
treme climate events. A study was undertaken at the University of Birmingham to develop
improved deterioration model for asphalt rut depth prediction. The approach used entailed the
application of Bayesian Monte Carlo analysis. The output of the study will be used to im-
prove existing road management systems such as HDM-4 and to consequently facilitate the
investigation of strategies for adapting to future changes in climate.
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1.0 INTRODUCTION

Pavement deterioration prediction models used to simulate the initiation and progression of
key defects such as rutting and cracking are important components of road decision support
systems such as the World Bank’s Highway Design and Management System (HDM-4). Such
systems are used by road authorities and general practitioners at the planning, programming
and project levels of road management to investigate road improvement and maintenance
policies, develop work programmes under budget constraints, compare road improvement and
maintenance alternatives, evaluate appropriate standards for various classes of roads, and to
determine the implication of marginal increase or decrease in funding levels on the road au-
thority as well as road users. An important requirement of these models is that they must cor-
rectly consider all important factors that have significant impacts on pavement deterioration
including but not limited to, traffic loading, road geometry, pavement material properties, and
climate (Paterson, 1987). Climate and consequently climate change affects road deterioration,
vehicle operating costs, road safety and the environment. There is a concern that the structure
and model coefficients of existing deterioration models such as that implemented in HDM-4
do not properly account for predicted change in climate. This study is focused on asphalt rut
depth deterioration prediction.

2.0 THE PROBLEM

The structure of current and past pavement deterioration models assume a static climate
whose variability can be determined from past data over often not more than 30 years. This
static climate assumption is often used as inputs into road management decision support mod-
els to simulate the long-term performance of road systems. The recently observed hot and dry
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summer of 2003 caused significant damage to road systems in the United Kingdom. Figure 1
shows plots of annual rates of rutting observed on trunk road sections located in East England
against maximum summer temperatures in each road section by year from 2002 to 2005.
Higher rates of rutting were observed in 2003 compared to other years. A similar trend to that
shown in Figure 1 could not be replicated when other climate variables such as rainfall inten-
sity and the number of days with snow lying were used instead of maximum summer tem-
perature.
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Figure 1: Annual Rutting and Corresponding Summer Temperature for Each Road Sections
on Trunk Roads in East of England

According to information from the UK Climate Impacts Programme, in the East of England 5
percent of the years within the baseline period (1960 — 1990) had a 2003-type hot dry sum-
mer. The frequency of this climate event is predicted to significantly increase as summarised
in Table 1. Table 1 summarises the predicted frequency of 2003-type hot dry summers in East
England over 30 year periods or time for three green house gas emission scenarios. This
raises the possibility that the severity and frequency of pavement defects and in particular as-
phalt rut depths on trunk roads in the UK may be altered leading to premature pavement dete-
rioration and increased costs of managing and using roads. Road maintenance policies derived
using deterioration prediction models or methodologies that assume a static climate and do
not properly take into account other causes of deterioration are likely to underestimate the
risks of increased frequency and severity of impacts associated future climate.

3.0 MODEL STRUCTURE

A study by Nunn et al. (1997), found that rutting on UK asphalt trunk roads is restricted to the
top 100mm of the asphalt layer. This finding suggests that the problem of pavement deforma-
tion on UK asphalt trunk roads is that of surface deformation rather than structural deforma-
tion. The model structure adopted therefore considers variables that are deemed important for
the performance of the pavement asphalt surfacing layers. A multiplicative model structure
was used because the effects of variables that contribute to rut depth progression such as traf-
fic loading, climate, and properties of asphalt surfacing materials is synergetic.

3.1 Existing Model Structure

The existing model structure given in Equation 1 is that implemented in the Highway Design
and Management system (HDM-4).

458



Anyala, Odoki and Baker

ARUT,, =, xCDS% x YE4 _, xSh% xHS “ (1)

Table 1: Observed and Predicted Frequency of 2003-Type Hot and Dry Summers in East

England
Time Slice Green .House Ga; Emis- Percentage of 2003-type Summers
sion Scenario

Baseline (1960 - 1990) - 5
Low 14

2020s [2011 -2040] Medium 15
High 16

Low 24

2050s [2041 - 2070] Medium 30
High 38

Low 34

2080s [2071 - 2100] Medium 49
High 67

Source (UK Climate Impacts Programme)

Where ARUT,,; is the annual incremental change in plastic deformation within the asphalt
layers of the pavement, in mm for road sections with surfacing material m during time period
t; CDS,, is a continuous variable ranging in value between 0.5 and 1.5 and used as an indicator
of the general level of binder content and stiffness relative to the optimal material design for
specified asphalt surfacing mixes. YE4,, is the annual number of equivalent standard axles, in
millions/lane on sections with surfacing material m during time period ¢; Sk, is the average
speed of heavy vehicles on sections with surfacing material m, in km/h during period ¢ HS,, is
thickness of bituminous layer on sections with surfacing m, in mm; and o, to a; are model
coefficients given in Morosuik et al. (2001).

This model structure (Equation 1) does not include climate variables necessary for accounting
for the impacts of future extreme climate events such as the 2003-type summers.

3.2 Improved Model Structure

The Improved model structure inlcudes additional variables deemed important for prediction
of asphalt surface rutting that were not properly accounted for in the existing model structure.
These additional variables inlcude road Gradient (G), asphalt binder Softening Point (SP),
asphalt surfacing Voids in Mix (VIM), asphalt surfacing age (AGE) and climate variable

f (Cmax- ) The improved model structure is given in Equation 2.

imt

Psm
SP.
ARUT, , = YE4%» xSh% x G/ x HS i x [—"ﬂ x(AGE,, +17* )] x f(Cmax,,)
VIM.

m imt

2
Where SPy, is the initial softening point of the asphalt binder of road section i for material
type m, VIM,, is the Voids in Mix for road section i with asphalt surfacing material m.
AGE;y 1s the age of the most recent surfacing material on road section i with material type i

during year t. The number 1x10™ is used to avoid numerical overflow.
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The multiplicative function ACmax;y) given in Equation 3 is a function of hot dry climate

variable such as maximum summer temperature at road section i with material type m and
during time period t derived from Skm gridded climate dataset for England.

0
Cmax,  )=|1+ L xT

fl o) [ [1+exp(62m +0,, Cmax,_, )] HOLDJ 3)
The function is assumed logistic in nature and is formulated to simulate the increase in rut
depth during 2003-type hot dry summer climate scenario. It is expected that at low air tem-
perature rutting is mainly governed by the compaction effect of traffic loading on the pave-
ment asphalt material using Equation 2. As temperature in combination with other factors in-
creases, the asphalt in the mix becomes less viscous resulting in increased rates of rutting and
Equation 2 would be adjusted using the logistic component in Equation 3. After the hot pe-
riod, it is assumed that the bituminous mix will not change significantly hence Equation 2
would still be applicable.

A parameter Tyoyp that takes binary numbers of 1 or 0 was adopted as an “on/off” switch for
the logistic function given in Equation 3. Tyoyp is assigned a value of 1 during hot dry sum-
mer years and a value of 0 otherwise. The completed improved asphalt surface rutting model
is given in Equation 4.

SP,

ﬂs
ARUT,,, = YE4/m xSh?%» x Gfm x HSfim x| —m_x AGE, | x| 1+ O, XTuotn |+ Eime 4)
VIM 1+ exp(@zl” +0,,Cmax,, )

im imt

Where ¢, is the error term; f,,, to fs5n, and 8, to 63, are model coefficients to be estimated
for each surfacing material type.

4.0 BAYESIAN ESTIMATION OF MODEL COEFFICIENTS
Bayesian inference combines information from observed data with prior knowledge about the
model coefficients (referred to as priors) to give updated distribution of the model coefficients
(referred to as posterior), which is described using Bayes theory as:

p(X, ARUT/B, 0)p(B,0)
Jp(X.ARUT/B. 0)P(.0)d(p.0) s

p(B,6/X,ARUT) =

P(B, 8/ X, ARUT) = posterior distribution of elements of the vector f§ or 6 given observed data
including explanatory or independent variables (X) and dependent variables (ARUT); P(X,
ARUT/ B, 0) = the likelihood of the observed data given the model coefficients B or 0; and,
P(B, 0) = prior distribution of the model coefficients sets of § and 0.

The main difference between estimation of model coefficients using ordinary least square and
Bayesian approach is that the latter associates a probability distribution with model coeffi-
cients B and 0. This probability distribution known as prior distribution p(B) or p(0) quantifies
uncertainties in model parameters before data becomes available (Desole, 2007).

4.1 Definition of Prior Probabilities

The prior distribution of the model coefficients were assumed to be normally distributed with
mean p and precision T which can be denoted as N(p,t). The precision 7 is defined as the re-
ciprocal of the variance. The means p of the prior distribution were largely based on the exist-
ing model coefficients specified in HDM-4 documentation (Morosuik et al, 2001). Non-
informative or vague priors with mean of 0 and precision of 0.001 were assumed for model
coefficients of additional variables included in the improved model structure. The assumed
prior distribution is given in Table 2.
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Table 2: Summary of Prior Distribution of Model Coefficients
Model Coef-  Prior Distribu-

Variables . . Data Source
ficients tion
Traffic Loading (YE4) By N(1, 0.001) Morosuik (et al., 2001)
Heavy stllﬁ‘)’le Speed B N(-0.78,0.001)  Morosuik (ct al., 2001)
Road Gradient (G) Bs N(0, 0.001) Vague prior
Asphalt Surfacing Thick- .
ness (HS) B4 N(0.71,0.001)  Morosuik (et al., 2001)
Asphalt Surfacing Proper- .
ties (SP*AGE/VIM) Bs N(0, 0.001) Vague prior
Climate Variables 01,0, 0; N(0, 0.001) Vague prior

4.2 Likelihood Specification

In Bayesian analysis likelihood specification refers to the assumption of the underlying distri-
bution of the observed response variable. The observed incremental rut depth data which was
assumed to be independent and identically distributed was stochastically represented as

ARUT, , ~ N[ (x)]

Where W(X) is a deterministic function given in Equation 4 comprising explanatory variables
and model coefficients. N is the underlying statistical distribution of the data which was as-
sumed to be normally distributed.

4.3 Estimation of Model Coefficients

The Windows version of Bayesian Updating using Gibbs Sampler (WinBUGS) was used to
derive the marginal distribution of the model coefficients. The marginal distributions were
achieved after a large number of iterations and when the Markov chain converges to a target
distribution. The convergence is required for the sampled value to represent a random draw
from the marginal distribution. This was achieved by simultaneously running three Markov
chains. The first 10,000 iterations of each chain deemed to include the random draws before
convergence or “burn-in” were discarded. Convergence was considered achieved when the
traces of the chains were found to be overlapping. The estimated model coefficients are pre-
sented in the next section.

4.4 Estimated Model Coefficients

Model coefficients were estimated for asphalt road sections with Dense Bituminous Macadam
surfacing. The estimated posterior distribution of the model coefficients are presented in Fig-
ure 3. Model variables such as traffic loading, vehicle speed, and hot dry climate with poste-
rior model coefficients clustered away from zero are considered important for the prediction
of annual incremental rut depth. Variables with coefficients scattered around zero are less im-
portant. In addition the sign (negative or positive) associated with the mean values of the es-
timated model coefficients given in Figure 3 are consistent with theory. For example the mean
model coefficient for traffic loading (f1) has a positive association which is consistent with
the fact that as traffic loading increases asphalt surface rutting is expected to increase. Simi-
larly the model coefficient for heavy vehicle speed ($2) has a negative association which sug-
gests that as heavy vehicle speeds decreases the asphalt surfacing is expected to become more
susceptible to rutting due to increased stresses associated with increased heavy loading time
on the road pavement.
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Figure 3: Posterior Distribution of Model Coefficients

5.0 CASE STUDY

A case study was undertaken using data obtained from the UK Highways Agency and the UK
Climate Impacts Programme. Climate predictions used in the case study was provided for the
low, medium and high green house gas emission scenarios. For each of these emission scenar-
ios future climate data was available in the form of probability distributions for four 30 year
time slices denoted as 2020s (2011 to 2040), 2030s (2021 to 2050), 2040s (2031 to 2060) and
2050s (2041 to 2070). The results reported in this paper are for the medium emission sce-
nario only.

The following approach was followed:

1. For the analysis year t =1 deterministic input variables comprising traffic loading, heavy
vehicle speeds, and road gradient, asphalt material surfacing and material properties were
defined in bespoke prototype model.

2. During the analysis year t = 1 a set of stochastic input variables n=1 comprising model
coefficients given in Figure 3 and climate data were randomly sampled.

3. The annual incremental rut depth for year t=1 and the set of stochastic random samples
n=1 was calculated using Equation 4. This step is repeated for 5000 sets of stochastic
random variables.

4. Steps 1 to 3 were repeated for each year t=2 to 30 for each time slice for which climate
data was available.

The output of the analysis was a distribution of incremental rut depths in each year. The mean
predicted cumulative rut depths for the four time slices are given in Figure 4. The results of
the case study suggest that the future prediction of rut depths is highly sensitive to future cli-
mate predictions.
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Figure 4: Mean Cumulative Rut Depth Prediction for Medium Emission Scenario for four
Time Slices

6.0 CONCLUSION

This study has demonstrated the need for pavement deterioration models used in decision
support systems such as HDM-4 to be improved to allow the impact of future climate events
to be accounted for in road performance modelling. Model coefficients for an improved rut
depth prediction model were estimated using a Bayesian approach. The approach associates
probability distribution to estimated model coefficients thereby ensuring that uncertainties in-
herent in the observed data are reflected in the predicted model coefficients. The study meth-
odology can be applied in any climatic zone or country provided appropriate data are avail-
able. Work is continuing towards linking the developed model with HDM-4 decision support
tool. This will provide authorities and general practitioners with the capabilities to investigate
the impact of various future climate scenarios on road agency as well as road user costs
thereby facilitating improved choices necessary to adapt to the inevitable impacts of climate
change.

7.0 REFERENCES

DelSole, T., 2007: 4 Bayesian Framework for Multimodel Regression. J. Climate, 20, 2810-
2826. (Boston: American Meteorological Society).

Morosuik, G., Riley, M and Odoki, J.B (2001). Modelling Road Deterioration and Works Ef-
fects. Highway Development and Management. HDM-4 Series of Publications. Vol-
ume 6. (World Bank, Washington DC, and PIARC, Paris, France).

Nunn, M.E., Brown, A., Weston, D. And Nicholls, J.C. (1997) Design of long-life flexible
pavements for heavy traffic. TRL report 250. (Crowthorne, Berkshire: The Transport
Research Laboratory).

Paterson W.D.O (1987). Road Deterioration and Maintenance Effects. Models for Planning
and Management. The Johns Hopkins University Press Baltimore and London

463



