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ABSTRACT 
 

 

This study investigates the critical design parameters for robust codes used for data 

transmission systems in a wireless environment. Robustness refers to the ability of a 

given code to withstand transmission channel impairments, and thus deliver a useable 

signal despite the unavoidable signal corruption of the channel. One of the major 

obstacles to the accurate delivery of information from the source to some destination 

is the unpredictable and random behaviour of the wireless communication channel. 

There are several factors/processes which influence the performance of the 

communication channel, namely: noise, distortion, shadowing, multipath fading, and 

many others. Most of these are stochastic in nature and we have often to deal with 

probabilistic variables. The main culprit of the channel impairments in a mobile 

environment, however, is multipath fading. Several methods exist for combating the 

multipath problem, such as space diversity, frequency diversity, polarization 

diversity, and adaptive modulation, but we believe that forward error coding is the 

most versatile method for mobile communications.  

 

This thesis deals with the fundamental issues related to the recovery of a useful signal 

from the corrupted signal using the forward error correction coding technique in a 

wireless environment. This is only possible through the use of robust codes whose 

mathematical origin is rather interesting, extending from the binary number system, 

to information theory and finally coding theory.  The thesis discusses the background 

to the wireless transmission problem, how it manifests itself in terms of path loss, 

shadowing, multipath attenuation, wave absorption, etc., mathematical modeling of 

these processes, multipath fading mitigation methods, and finally gives a comparative 

presentation of the critical design parameters of turbo codes as a representative 

example of robust codes. 

 

From the error performance analysis and results, it is evident that turbo codes are 

quite suitable for the emerging wireless communications technologies and 

applications. However, low density parity check codes are preferred to turbo codes in 

some applications because of their more efficient implementation as well as better 

performance. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Transmission of information from a source to a destination by wireless means 

involves many hidden issues, such as channel noise, interference, and fading 

phenomena. When the recipient of the message fails to decipher the true meaning 

intended, he/she realizes that the system he/she is dealing with is quite complex. 

Unfortunately, not everyone is in a position to diagnose that problem.    

 

The last ten years have been marked by a phenomenal development in high-tech 

mobile and personal communications systems and their application on a world-wide 

basis. A whole range of new wireless services and products have been developed, 

spanning from low mobility indoor wireless local area networks (WLANs) to high 

mobility outdoor mobile broadband systems (MBSs).  This development is the 

motivation for an investigation into the fundamental limits of data transmission over 

the wireless channel [73]. 

 

A common feature of all wireless operating environments is that, the received signal 

undergoes random variations; the problem we wish to address deals with the 

difficulties encountered with the transmission of messages due to the inherent 

problems of noise and fading phenomena, which are associated with the transmission 

channel : during the process of transmission, there is usually some altering of the 

message due to fading (weakening of the signal), sporadic electrical bursts 

(interference) and other naturally occurring noise that creeps into the wireless 

transmission medium.     

 

Thus, a fundamental characteristic of wireless communications is that, the channel is 

time-varying. This occurs due to the mobility of the user or of objects in the 
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propagation path. In addition, multiple scatterers, such as buildings and forests cause 

the received signal to contain time-shifted versions of the transmitted signal. This 

delay spread translates into inter-symbol interference (ISI), in digital communication.  

We also note that cellular networks are dependent on a scheme of frequency reuse, 

whereby, similar sets of frequencies are reused by cells, which are geographically 

well separated in order to use the frequency spectrum more efficiently. However, this 

scheme has the unavoidable effect of co-channel interference due to interfering 

signals from outside the cell of interest. Therefore, an important aspect of wireless 

communication is to understand the impact of interference on reliable 

communications. 

 

The solution to the problem is to insure that the intended message is obtainable from 

whatever is actually received. This presents wireless system designers with a 

challenge to design powerful error control techniques, that can minimize the effect of 

the hostile propagation conditions. Many different disciplines come together to 

successfully recover the corrupted signals: electronic engineering, computing and 

mathematics. This multidisciplinary interest in the problem explains why several 

approaches have been used, leading to useful contributions towards the solution to the 

problem of transmitting an information signal, through the hostile wireless 

environment.  

Nevertheless, the problem still exists because the causes of corruption of the signal 

are random in nature and often very difficult to predict accurately. 

1.2 CLASSICAL METHODS USED TO MITIGATE 

WIRELESS CHANNEL PROBLEMS 

1.2.1 Increasing Signal Power 

Increasing signal power is similar to talking louder in a noisy room. We intuitively 

know that as the signal to noise ratio is increased, the errors are bound to decrease. 

Assuming that we can do nothing to the environment, the most obvious thing we can 

do is to increase the transmitter power. However, examples of power-limited devices 

exist, such as mobile phones and satellites. Both of these have a fixed amount of 

power and can not increase their transmitting power beyond a certain point. In fact 

most are designed to operate at their maximum power and have no spare power 

available. 
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There are actually some disadvantages associated with using this scheme. When 

amplifier characteristics are not linear, increasing the power means both the signal 

and noise are amplified making the situation worse. You can see this mechanism at 

work in a radio. When you increase the volume, the noisiness of the signal goes from 

bad to intolerable [43]. 

1.2.2 Decreasing Signal Noise     

If we are at a party and the room is noisy for conversation, we may have to move to a 

quieter corner, where there is less noise. If you turn on the fan in the room and the TV 

reception goes bad, you turn off the offending item to improve the reception. These 

are some means of noise reduction. In a communication device, the only noise that is 

under the designer‟s control is thermal noise, and inter-modulation noise of the 

system. Assuming that, the system is designed to minimize these, we do not have any 

way of reducing any other external noise. We are at the mercy of the environment and 

have to accept this as it is. Nevertheless, we can do something to mitigate the effects 

of noise and other adverse effects as discussed in the following subsections. 

1.2.3 Introducing Diversity [43] 
Various diversity techniques exist which can be employed to correct for burst errors. 

Examples include: 

 Space diversity, 

 Frequency diversity, and  

 Time diversity. 

 

All these systems have some redundancy associated with them, in that, data has to be 

transmitted twice or more times! This has cost implications, with reference to the 

wireless channel and terminal equipment. 

 

When listening to a radio, you find that the signal is waxing and waning. Your instinctive 

response is to move the radio to a different location. With a mobile phone, we may switch 

channels, or ask the caller to call us on a different line. In satellite communications, in wet 

and rainy areas, we often have two ground stations separated by some distance, both 

receiving the same signal so as to increase the signal-to-noise ratio,(SNR). Different 
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polarizations which are used to expand the useable spectrum in satellite communications 

can also be used to send the same information as a means of error correction. All these 

techniques fall under the category of diversity, the main purpose of these is to improve 

signal quality by taking advantage of redundancy. Another form of diversity comes to use 

from an unexpected source in the case of mobile phones. The bouncing around of the 

signals causes amplitude reduction but with sophisticated signal processing, we can 

actually use these low-power signals to combine and improve the SNR [43]. 

 

In space diversity two or more antennas are used, each connected to a separate 

receiver. These antennas are sited sufficiently far apart to decorrelate fading at the 

outputs of the corresponding receivers. Frequency diversity is a technique whereby 

two different frequencies are used to transmit the same information. Frequency 

diversity can be in-band or out-of-band depending upon the distance between the 

carrier frequencies. In time diversity systems the same message is transmitted more 

than once. The most common diversity example is dual diversity (employing two 

antennas, two unique frequency allocations or two entirely separate transmissions of 

the same information). Over a wide range of applications a 3 dB signal-to-noise 

(SNR) improvement is achieved by use of dual diversity. 

 

1.2.4   Forward Error Correction 

Multipath fading, interference, and noise effects severely degrade the average bit-

error rate, (BER), or probability of error, (Pe), performance of a wireless digital radio 

transmission link. In order to achieve a highly reliable data transmission without 

excessively increasing both transmitter power and co-channel reuse distance, it is 

indispensable to adopt an auxiliary technique that can cope with the fast fading effect 

and the noise and interference associated with the channel. 

 

When a duplex line is not available or is not practical, a form of error correction 

called Forward Error Coding (FEC) is used. The receiver has no real-time contact 

with the transmitter and can not verify exactly whether the received code is correct. It 

must make, however, a decision about the received data and do whatever it can to 

either fix it or declare it unsuitable. 
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1.3 ROBUST CODING SCHEMES 
 

Ordinary use of the word robustness as commonly defined in dictionaries describes 

the state of being strong and healthy, full of vigour and hardy. In the context of 

communications, the usage is not too different [1]. Robustness characterizes a 

signal‟s ability to withstand impairments from the channel, such as noise, jamming, 

fading, and so on. A signal configured with multiple replicate copies, each transmitted 

on a different frequency (frequency diversity), has a greater likelihood of survival 

than does a single such signal with equal total power. The greater the diversity 

(multiple transmissions, at different frequencies, spread in time), the more robust the 

signal against random interference. 

With reference to coding schemes, a code used to convey information via a 

corruptible channel, but with the ability of enabling recovery of a useful signal from 

the corrupted signal, is generally referred to as a robust code. 

A given channel code is said to be robust if the transmitted message across a noisy or 

generally corruptible channel can be recovered from the received and often corrupted 

code word at the receiver with minimum effort. This definition does not formally exist 

anywhere in the recently published literature. 

 

Coding Strength:   It should be noted that there are not many codes which are capable 

of detecting and correcting all kinds of error. In other words, all error patterns cannot 

be correctly decoded. The error correction capability of a code, hereby, referred to as 

the coding strength, can be investigated by first defining the physical structure of the 

code. 

 

Modern emerging wireless digital communication systems have to adapt robust 

coding schemes to combat the effects of noise, interference, and multipath fading. 

1.4 THE CONCEPTUAL-THEORETICAL FRAMEWORK 
 

Much of modern communications rests on the well-established, but still vital 

disciplines of signal generation, modulation, coding, demodulation, detection, 

compression, equalization, signal processing, etc.. Figure 1.1 illustrates a conceptual 
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framework of the data transmission problem and our motivation for research in this 

area. The challenge to the design engineer is to ensure that the recipient at the 

destination is able to extract a useful signal from what ever is available at the output 

of the communication channel. 

 

 

 

 

 

   Figure 1.1  The Conceptual -Theoretical Framework 
 

 

Here our emphasis is on the propagation of the information signal from the source to 

the destination. We are aware that the communication channel between the two 

extreme ends is full of random and often time varying impairments.  While we follow 

what happens to the signal from the input of the channel to the output of the channel, 

our main interest is the adaptation of suitable coding techniques, referred to as 

robust codes, to mitigate the problems of noise and multipath fading, which are 

actually a nuisance, as far as accuracy of the delivered information signal is 

concerned.  
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The motivation for research into robust codes for wireless applications could not be 

carried out in isolation. Robust codes are a product of coding theory, which is itself a  

subset of the wider knowledge area in mathematics, generally referred to as field 

theory. Source coding and channel coding are two prominent subsets of the coding 

theory specialization. Each component has certain crucial applications in digital signal 

processing. Source coding is necessary because it is used to remove redundancy in the 

source signal before transmission which has great implications in saving transmission 

time, and conservation of space in storage media. Related topics in this area are the 

source coding theorem, Huffman codes, and data compression algorithms. 

 

Channel coding facilitates recovery of a useful signal from a corrupted signal from the 

wireless communication channel. Channel coding is comprised of various categories 

of codes including block codes, linear block codes, convolution codes, concatenated 

codes, Reed-Solomon codes, and the more recently developed, low density parity 

check codes (LDPC), and turbo codes. Important performance metrics for these 

categories include: the Hamming distance, and channel capacity, taking into account 

the effects of noise, multipath fading propagation, and bandwidth limitations, bit error 

rates, and coding gain. 

 

The salient properties of a robust code can only be arrived at after a thorough 

understanding of the major problems associated with the wireless communication 

channel. We are especially interested in the wireless channel, where the problems of 

noise and multipath fading phenomena are more pronounced and lead to the distortion 

of the useful signal. 

 

Because of the gravity of this problem several approaches have been tried in practice, 

all geared to achieving a good signal at the output of a corrupted wireless 

communication channel. For instance: 

 Noise mitigation through appropriate modulation techniques 

 Flat fading mitigation through various type of diversity and adaptive antenna 

systems 
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 Intersymbol interference (ISI) mitigation through equalization, adaptive coding, 

multi-carrier modulation and spread spectrum techniques. 

 

We are also cautious about traditional error-detecting approaches which assume error 

models and distributions. Such approaches may not be ideally suited for protection of 

data from some wireless devices. We therefore propose modifications of traditional 

methods which aim at providing uniform protection against all errors without (or 

which minimize) any assumptions on the error distributions.  

 

In this thesis we propose forward error correction schemes based on a class of 

nonlinear systematic error-detecting codes, called robust codes. These nonlinear 

codes are robust in terms of equal protection against all errors. Examples of robust 

codes include turbo codes, low density parity check codes, Reed-Solomon codes, and 

Golay codes. 

1.5 STATEMENT OF THE PROBLEM 
 

Modern emerging wireless digital communication systems have to adapt robust 

coding schemes to combat the effects of noise, interference, and multipath fading, 

which lead to bit errors at the receiver. 

An important question is: 

  

What are the critical design parameters of a robust code? 

 

In other words: Under what circumstances, if any, is it theoretically possible to 

design a channel coding system (encoder plus decoder) such that the overall 

transmission of information from a source to a user can become as reliable as we 

desire?  

 

The fundamental problem is finding codes with both content and reasonable error 

handling ability. Whether this is possible, the answer is “yes”. The existence of such 

codes is a consequence of the channel coding theorem from Shannon‟s 1948 paper 

[3]. Finding these codes is another question. Once we know that good codes exist, we 
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pursue them, hoping to construct practical codes that solve more precise versions of 

the fundamental problem. This is the quest of the coding theory. 

1.6 RESEARCH APPROACH 

1.6.1 Objectives 

In this thesis, we believe that the causes of stochastic distortions in the information 

signal can be overcome or minimized by the use of robust coding techniques, such 

that, despite the presence of some corruption in the received signal, the useful 

information can be derived from the corrupted signal.  

 

An error-correcting code is a way of adding redundancy to information, so that a 

useful component can be recovered even if some of it is corrupted in transmission. 

 

The overall objective of our research is to undertake a comprehensive study of code 

design, comparative performance analysis, coding and decoding methods, and 

emerging applications. The specific objectives of the study are:  

 Investigation of the fading channel phenomena in mobile wireless communication 

systems and description of these phenomena using models. 

 Investigation of various coding schemes employed in wireless transmission of 

digital data in order to establish the salient parameters that influence the wireless 

channel performance in the presence of noise and fading phenomena in a mobile 

environment. 

 Evaluation of code performance, which leads to the identification of optimum 

codes for wireless channels. 

 Establishment of the fundamental performance bounds and capacity limits at all 

levels and consideration of several design alternatives. 

 To use simulation processes in order to compare our results with those obtained by 

other researchers using different approaches and methods. 

 

Other issues include investigation of impact of channel performance on the output 

signal, noise and fading phenomena mitigation measures and fundamental channel 

capacity limits. The research has to a great extent fulfilled most of the above 

investigation objectives, and with the help of simulation using MATLAB software, we 
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were able to achieve satisfactory results comparable to those from other comparable 

studies elsewhere. 

1.6.2 Methodology 

In order to be able to design channel codes capable of surviving the unpredictable 

corruption tendencies of the channel, the first step to take is to fully understand the 

stochastic behavior of the channel parameters and the main culprits contributing to the 

predicament. From the preliminary literature survey conducted earlier, it was 

established that scrupulous noise, multipath radio propagation, and intersymbol 

interference are the major culprits. This research is therefore focused on the analysis 

of signals in the noise environment, and multipath fading phenomena. The analysis is 

followed by simulation of various models, and comparison of our results with those 

results obtained by other researchers, who have carried out test-bed measurements in 

typical application environments.  We then turn our attention to various categories of 

channel codes, with the aim of establishing the cardinal parameters, which can be 

optimized for a given code to be able to survive the onslaught of the channel 

impairments. This endeavor incorporates a thorough study of channel codes and 

simulation of the behavior of these codes under different scenarios of noise and 

multipath phenomena. 

1.6.3 Justification 
Currently, some robust coding schemes do indeed exist. Their potential at influencing 

the performance of wireless technologies has not been yet fully exploited. This 

research attempts to unravel the potential of robust coding schemes in facilitating 

overall performance improvement in emerging wireless technologies. 

 

The research reviewed recent activities in coding theory and identified the salient 

design parameters of robust coding schemes and how these schemes can be adapted in 

emerging wireless technologies for improved performance.   

1.7 SIGNIFICANCE OF THE STUDY 
 

No electronic data transmission or storage system is perfect. Each system makes 

errors at a certain rate. As data transfer rates and storage densities increase, the raw 
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error rate also increases.  Error correction is needed to ensure the accuracy and 

integrity of data [2].   

Information access by anyone anywhere has emerged as a strategic goal for a whole 

new wave of technologies, with networking being at the core.  The implementation of 

the networking vision for the future – concerning seamless access to information by 

anyone --  requires a high speed/bandwidth wire-line infrastructure coupled to a 

wireless one, supporting a multitude of mobile end-users‟ access. The technology for 

maximizing the capacity and performance of wireless communication systems will be 

robust coding. 

The rising demands for mobile phones and higher data rates introduce new challenging 

requirements on radio spectrum allocations. As the radio spectrum is an immensely 

scarce resource, there is an increasing realization that it needs to be used more 

efficiently. Existing radio technology cannot offer satisfactory link and network 

performance required for the high data rates in the third and fourth generations of 

cellular mobile systems. Currently, there are research activities around the world 

focused on expanding channel capacities in the future mobile communications. One of 

the most promising approaches in this area is the application of robust coding and 

modulation schemes jointly. 

1.8 SCOPE OF THE RESEARCH 

The research covered both theoretical and practical applications of robust coding 

schemes. However, greater emphasis is placed on the theoretical analysis and 

simulation of models, rather than on physical setups involving test beds for the 

various parameters of interest. 

The research is focused on code design, performance analysis, coding and decoding 

methods, modeling and simulation techniques of transmission channels. We are 

interested in understanding the physical processes involved and how they influence 

the performance of a given code and hence the different measures to take in order to 

ensure the robustness of a given code in a given transmission environment. 

1.9   THESIS OUTLINE 
The research presented in this thesis is primarily concerned with aspects of reliable 

communication in the presence of partially known interference and channel fading 
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phenomena. By analyzing the salient radio signal propagation characteristics of the 

wireless channel and examining the achievable performance of various transmission 

channel codes and detection schemes, we make some recommendations about robust 

communication structures in form of codes suitable for the wireless channel. 

 

The thesis is organized as follows:  

 

Chapter One: Comprises the introduction and presents the conceptual-theoretical 

framework.  

 

Chapter Two: Reviews the major milestones of information theory, coding theory, 

and establishes the cardinal theoretical concepts on which the design of channel codes 

is based.  

  

Chapter Three: Discusses wireless channel signal propagation phenomena, modeling 

and simulation aspects. It dwells at great length on various aspects including fading 

phenomena, signal propagation models, wireless mobile channel design issues, and 

analysis and modeling of noise and interference models. 

 

Chapter Four: This chapter discusses recent advances in channel coding, with 

particular emphasis on the turbo code concept. Various cardinal parameters of turbo 

codes are identified and their mathematical relationships are derived. 

 

Chapter Five: This chapter presents and discusses radio propagation simulation using 

graphic user interfaces developed using MATLAB. This simulation exercise aims at 

illustrating the propagation channel characteristics, such as fading and noise in the 

simplest way using a computer.  

 

Chapter Six: This is a presentation of the turbo code simulation experiments and the 

analysis of results. The chapter demonstrates how transmission errors can be 

mitigated by varying various turbo code parameters.  

 

Chapter Seven: presents the research findings, conclusions and recommendations, 

and proposals of future research work in this field. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

2.1 INTRODUCTION 

 

Error-correcting codes are at the heart of most modern data transmission and storage 

systems, including wired and wireless, optical and magnetic recording systems. Our 

current research effort focuses on robust coding for emerging wireless data 

communication systems. The basic idea of coding is to add redundancy to data for 

transmission so that even in the presence of some noise and distortion introduced by 

the transmission channel or storage system, the original data can be recovered error-

free.  

 

A well-designed coding system adds the minimum amount of redundancy to achieve 

the desired level of robustness. Most traditional error correcting codes are based on 

algebraic techniques, i.e., the redundant information is added according to some 

cleverly chosen algebraic equations. These equations are then exploited at the decoder 

in order to recover the original information from the possibly noisy or corrupted 

received code word. The binary (7,4) Hamming code[4] and  the (23,12) Golay code 

[5] are some of the classic algebraic codes examples, which are also some of the very 

few codes known as “perfect codes”.  

 

The purpose of this literature review is to show the connections between information 

theory, coding theory, and how these theories have been exploited in the development 

of robust coding techniques for reliable data transmission in a hostile wireless 

environment, namely a transmission channel faced with problems of multipath fading, 

interference from other radio signal sources and noise. 
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2.2 INFORMATION THEORY: THE FOUNDATION OF 

MODERN COMMUNICATIONS 
 

Information theory, also referred to as communication theory is a branch of 

mathematics that deals with the information content of messages. It is concerned with 

the amount of information and with the accuracy of its transmission.  Information 

theory addresses two aspects of communication:  

 "How we define and measure information" , and 

 "The maximum information, that we can send through a communications channel"  

Information theory involves the quantification of data with the goal of enabling as 

much data as possible to be reliably communicated over a channel and/or stored in a 

medium.  

The measure of data, known as information entropy, is usually expressed by the 

average number of bits needed for storage or communication. 

Information theory presents the fundamental concepts and theorems which are at the 

very heart of modern communications and information technology. The results of 

information theory tell us [6]: 

 How to quantify the information content in a set of data; 

 How to model and analyze a wide range of communications channels and their 

capacity for transmitting information; 

 Conditions under which error- free representation and transmission of information 

is possible, and when it is strictly impossible; 

 Conditions for the design of good ways of (codes for) representing information so 

as to achieve data compaction and compression, and channel error robustness; 

 Which minimal quality reduction we may expect for a given transmission rate, a 

given information source, and a given communications channel; 

 How we may split our communication systems into subsystems, in order to 

simplify design without the loss of theoretical performance. 

Coding theory is a branch of information theory concerned with finding explicit 

methods, called, codes, of increasing the efficiency and reducing the net error rate of 

data communication over an impairments prone channel. These codes can be 
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subdivided into two main sub-categories, namely data compression codes (associated 

with source coding) and error-correction codes (associated with channel coding).  

While source coding and channel coding are the fundamental concerns of information 

theory, this research is mainly focused on channel coding techniques. 

Design engineers are interested in the basic concepts and the most famous theorems 

of information theory because they are very useful in explaining certain processes in 

the design and analysis of communication and information storage systems. 

 

2.2.1 Claude Shannon and the Channel Capacity 

Theorem 
 
Claude Shannon is regarded as the father of Information Theory because he laid 

the foundations of Information Theory in his famous paper “The Mathematical 

Theory of Communication (1948)” [3] while working at Bell Labs in the United 

States. He thereby established himself as the creator of digital communications. His 

paper was a culmination of research on how fast the telegraph could operate. The 

main result of his formulations is that the only way to get the most storage capacity in 

a storage device or the fastest transmission through a given communications channel 

is through the use of very powerful error-correcting systems. In his monumental 

paper, Shannon showed roughly that up to a special measure called the channel 

capacity, it is possible to transmit information with an arbitrarily small probability of 

error by using long enough code words.  

 

Unfortunately, Shannon used probabilistic techniques in his paper and did not provide 

any method for actually constructing such codes. We can appropriately, explicate 

Shannon‟s theory in common terms that if our information source is sending data at a 

rate less than what the communications channel can handle, we can add some extra 

bits to the data stream to push the error rate down to an arbitrarily low level! The 

down side of this is that communications delay is increased as we achieve lower and 

lower data error rates. However, for every situation, there are enough choices of 

channel coding that there is likely some satisfactory compromise between delay and 

error performance. 
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Before Shannon‟s discovery, it was believed that channel noise (alone) prevented 

error-free communications. Shannon, however, showed that channel noise only 

limited the transmission rate, and not the error probability.  Shortly after the 

publication of Shannon‟s work, many engineers and mathematicians got to work 

finding out how to create arbitrarily good communications links. Some of those 

techniques are discussed in this thesis. 

Earlier on in 1928, Harry Nyquist had published his work in a paper on, “Certain 

Topics in Telegraph Transmission Theory”, in which he observed that a channel‟s 

signaling rate was a function of the channel‟s bandwidth. Moreover, he proved that 

the signaling rate must be at least twice the bandwidth of the signal being transmitted. 

Nyquist also explored signal spacing and signal shaping, but he never looked at how 

interference affected the signals.  

Shannon expanded the work of Nyquist to include interference, or noise. He 

postulated that the goal of a communications system was to get the signal through a 

noisy channel to the receiver. Noise is random, variable, and unpredictable, whereas 

distortion is not. Distortion can be measured and the channel conditioned to mitigate 

distortion‟s adverse effects. A multipath propagation phenomenon is quite similar to 

noise in that it is random in nature and unpredictable as well. 

At the core of Shannon‟s work, however, is the equation for a channel‟s information 

carrying capacity:    

                      )/1(log2 NSWC      [bits/second]  ………….……………(2.1) 

C is the capacity of the channel in bits per second, W is the bandwidth of the channel 

in Hz, S is the signal power in watts, and N is the noise power of the channel in watts.  

S/N is the channel‟s signal-to-noise ratio. The equation states that the balance 

between the power and the bandwidth drives the channel. For example, increasing the 

bandwidth allows us to decrease the power while maintaining the same capacity. The 

power/bandwidth tradeoff is an important part of wireless communications.  

Shannon also explored the effects of source compression and channel coding (error 

detection/correction codes) on information carrying capacity. The Shannon bound is 
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the minimum bit energy required for reliable data signal transmission,  i.e., 

dB
N

E

o

b 59.1)2ln(  , which is the absolute minimum signal energy to noise 

spectral density ratio required to reliably transmit one bit of information, assuming 

infinite amounts of bandwidth. 

Other implications of the Shannon theorem (c.f. equation (2.1)) are 

 lim 0,
N

C


  assuming S is fixed,  and C W if S N . 

The first result is quite practical and plausible, but the second has no practical 

interpretation. 

From the 1950s through the 1970s, Shannon‟s theorem was viewed as an engineering 

limit rather than an information carrying philosophy [8]. In the 1980s, when we 

moved to digital wireless to deal with the lack of cellular capacity, Shannon‟s work 

became the reality of wireless communications. In 2003, Calhoun [7] introduced the 

notion of post Shannon to categorize the relevance of Shannon‟s work to the 

capacity-challenged and difficult-to-manage wireless channels. Moreover, this new 

look at Shannon‟s work raises questions about the basic theory. For example, noise 

addition has proven to be beneficial in some environments. 

Claude Elwood Shannon‟s work was referred to by Senator John D. Rockfeller in the 

US congress after Shannon‟s death, on February 24, 2001, as “The Magna Carta of 

the Information Age”. Shannon‟s ideas first presented in his famous paper have been 

crucial in enabling the information and communication technological advances which 

have created today‟s information society. We think of Newton‟s Laws, Maxwell‟s 

Equations, and Einstein‟s Relativity as groundbreaking, enabling all sorts of advances 

[42]. Shannon‟s theory of communication is definitely of that order. 

The Channel Coding Theorem:  Let C(S) be the capacity of a memoryless channel at 

a cost S. For any information rate R < C(S), and for any desired reliability of 

transmission over the channel (as measured through probability of channel decoding 

error) there exists a channel code of rate R (information bits per channel symbol) such 

that the desired reliability or robustness may be obtained. For rates R > C(S) no such 
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codes exist, and there will always be a nonzero probability of decoding errors. Such 

robustness is essential for a wireless channel, just as it is for any good quality 

machine; properly building such robustness into the code is done by channel coding. 

Shannon’s Noisy Channel Theorem states that: For every channel there is a rate of 

transmission, C, called the capacity of the channel, such that, if it is acceptable to 

have a rate R of transmission less than C, then there exists an encoding scheme that 

will reduce the probability of decision error to any desired (low) level. We note that 

the channel coding theorem and Shannon‟s noisy channel theorem refer to the same 

thing. 

Interpretation of Shannon’s Channel Theorem 

What was completely novel about this result, compared to the usual line of thinking 

before Shannon‟s papers, was that it showed that the achievable transmission rate 

was not a function of the desired degree of communication reliability. Either 

communication can be made reliable, or it cannot. In the case that it can, it can be 

made as reliable as we want: Methods for achieving any desired reliability have been 

proven to exist for transmission rates all the way up to the (constant) channel capacity 

– at the cost of increased system complexity[6]. 

Conversely, it has been proven that there are no transmission schemes to be found, 

which can guarantee any degree of reliability if one attempts to transmit above 

capacity. 

The channel coding theorem effectively consists of two parts: a direct part which 

says that for a rate R < C there exists a coding scheme with arbitrarily low block and 

bit error rates as we let the codelength n tend to infinity, and a converse part which 

states that for R   C the bit and block error rates are strictly bounded away from zero 

for any coding scheme. The channel coding theorem establishes rigid limits on the 

maximal supportable transmission rate of an AWGN channel in terms of power and 

bandwidth. 

The channel coding theorem holds for both discrete and continuous channels. It is, 

perhaps, chiefly an existence theorem; in other words, it does not exactly tell us how 

to construct our channel coding systems – beyond imposing necessary constraints on 

the channel symbol distribution. Several methods of channel coding are used in 
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practice including block coding, convolution coding, and turbo coding, and more 

specifically for data transmission the following code modulation techniques are used: 

Quadrature Amplitude Modulation, Frequency Shift Keying (FSK), Dual Phase Shift 

Keying (DPSK), and Quadrature Phase Shift Keying(QPSK) [18]. 

2.2.2 The Generic Communication System Model 
Central to the development of information theory is the notion of a generic 

communication system model which can be used as a unifying framework suitable for 

describing a wide range of real-world systems. In the generic model proposed by 

Shannon, information is transmitted from an information source to a user, by means of 

a transmitter, a communications channel, and a receiver. This is illustrated in Fig. 2.1 

below. 

 

Examples of possible information sources in this context are: human speakers, video 

cameras, musical instruments, microphones, loudspeakers, and computer keyboards. 

The transmitter and receiver perform information coding and decoding respectively, 

which means processing the messages generated by the information source in order to 

[6] : 

 Represent (encode) the messages in a suitable way during transmission over the 

channel, and 

 Regenerate (decode) the messages at the receiver end, with as little deviation 

from what was originally transmitted as required for the service under 

discussion. 

 

 

 

 

 

   Fig. 2.1 The Generic Communication System Model 

The term transmission here is intended to cover transmission both in space (between 

two different locations) and in time (i.e., storage of data on an imperfect medium). 
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Examples of physical communication channels thus range from wireless channels 

such as satellite links, mobile radio channels, and broadcast channels, via wired links 

such as optical fibres and copper transmission lines, to magnetic storage media and 

CDs.  

Prior to Shannon‟s seminal papers of the 40s and 50s, there had been simply no 

satisfactory way of modeling and analyzing the process of information generation, 

transfer, and reception from a transmitter to a receiver over a noisy communications 

channel – which actually is a generic description of how all practical communication 

systems work.  With Shannon‟s introduction of a generic communication system 

model, his view of information as a probabilistic entity (sidestepping its actual 

semantic meaning), the insight that the process of information transmission is 

fundamentally stochastic in nature, and his invention of precise mathematical tools to 

give a complete performance analysis of his model, the door was suddenly opened to 

a much more fundamental understanding of the possibilities and limitations of 

communications systems.  

A former contemporary of Shannon, David Slepian (1973) says, “Probably no single 

work in this century has more profoundly altered man‟s understanding of 

communication than C.E. Shannon‟s article, “A mathematical theory of 

Communication”.   

We, however, believe that information theory can be used to reveal a performance 

potential beyond what was previously thought possible, and aid in the design of 

systems realizing this potential. For example, Shannon‟s theory enabled scientists to 

design more efficient communication and storage systems by demonstrating the 

enormous gains achievable through coding, and by providing the intuition for the 

correct design of coding systems. The sophisticated coding schemes used in systems 

as diverse as deep-space communication systems, and home compact disk audio and 

video systems, owe their success to the insights provided by Shannon‟s theory. 

2.3 FORWARD ERROR CORRECTING CODES 
 

Shannon showed [2] that every communication channel has a capacity, C, (measured 

in bits per second), and as long as the transmission rate, R, (also in bits per second) is 
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less than C, it is possible to design a virtually error-free communications system using 

error control codes. Shannon‟s challenge was to prove the existence of such codes. 

He did not manage to tell us how to find them. But nevertheless, he had set the ball 

rolling: 

 

Motivation for this research emanates from this question. Our research is an 

investigation of the critical wireless channel code design parameters, which influence 

the performance under application of error-control coding techniques. 

 

A major concern of channel coding is the control of errors so that reliable 

communications can be obtained, i.e., the output signal 
~

s  is as close to the input signal s 

as possible. There are many coding schemes available. However, turbo coding is the most 

exciting and this is a potentially important development in recent years. The turbo code is 

capable of achieving near Shannon capacity performance [12]. 

After the publication of Shannon‟s famous paper [2], researchers struggled to find 

codes that would produce the very small probability of error that he predicted. It was 

not an easy task throughout the 1950s when only a few weak codes were found [9]. 

During the 1960s, more enthusiasm was gained in the subject, the research 

community split into two groups between the so-called algebraists who concentrated 

on a class of codes called block codes and the stochastics (or probabilistic), who were 

concerned with understanding encoding and decoding as a random/stochastic process. 

The stochastics (probabilistic) eventually discovered a second class of codes, called 

convolution codes, and designed powerful decoders for them. In the 1970s [9] the two 

research groups agreed to cooperate. Their joint effort led to the development of 

several efficient decoding algorithms. This development led to some types of 

algebraic coding (linear block code) schemes which were most effective in 

combating “bursty” errors (errors that arrive in bursts).  

 

Convolution coding is generally more robust when faced with random errors or white 

noise; however, any decoding errors occurring in the convolution decoder are more 

likely to occur in bursts. We note that a single error correction code does not always 

provide enough error protection with reasonable complexity, and therefore often two 
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or more convolution encoders have to be concatenated to create a much more 

powerful code. 

 

Meanwhile, around the same period, a contemporary of Claude Shannon, Richard 

Hamming discovered and implemented a single-bit error-correcting code. Richard 

Hamming is referred to as the father of Coding Theory because he initiated concepts 

of error-correcting codes [2]. The basis of modern forward error correction coding 

techniques is, however, the five-page paper, ”Polynomial Codes Over Certain Finite 

Fields”, published in 1960 by Irving Reed and Gustave Solomon in the Journal of the 

Society for Industrial and Applied Mathematics. This paper was a major fundamental 

change in the way information could be handled during transmission and storage to 

ensure reliable reception of messages. Currently, Reed-Solomon codes are integral 

parts of several digital systems including CD players, digital audio tape, digital 

television, mobile phone systems, digital imaging systems, and so forth. 

 

In 1960, researchers including Irving Reed and Gustave Solomon discovered how to 

construct error correcting codes that could correct for an arbitrary number of bit 

errors or an arbitrary number of “bytes”, where a “byte” means a group of “eight” 

bits. Even though the codes were discovered at this time, there was no way known to 

decode the codes. Reed and Solomon then staff members at MIT‟s Lincoln 

Laboratory, introduced ideas that form the core of current error-correcting techniques. 

For instance, everything from computer hard disk drives to CD players and also 

Reed-Solomon codes (plus a lot of ingenuity) made it possible to receive the stunning 

pictures of the outer planets sent back by Voyager II. They also make it possible to 

recover almost perfect music to enjoy from a scratched compact disc today. It is also 

predictable that within a foreseeable future, these forward error control codes (FECC) 

techniques will enable the profit mongers of cable television to squeeze more than 

500 channels into their systems. 

 

Over the years, isolated groups of coding theory researchers looked at the 

computational aspects of error-correcting codes, beginning with a paper by Robert 

Gallagher [10] of MIT in the 1960s. But only with the technological revolution of the 

1990s did computational issues come to the forefront of code design. During that time, 

French engineers devised turbo codes, which have extremely fast (linear-time) 
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encoding and decoding algorithms and, in practice, correct a large fraction of errors. At 

the time, however, rigorous analysis of the performance of these algorithms eluded 

researchers. Naturally, the new algorithmic focus of coding theory caught the attention 

of the theoretical computer science community. Soon than later, Michael Sisper and 

Danielman of MIT used so-called expander graphs, a combinatorial tool widely used in 

computer science, to construct codes whose decoding efficiency was intricately 

intertwined with their ability to error-correct. 

 

In 1968, Elwyn Berlekamp and James Massey discovered algorithms needed to build 

decoders for multiple error-correcting codes. They came to be known as the 

Berlekamp-Massey algorithms for solving the key decoding equation [11]. It was later 

established by researchers after some years that the Berlekamp-Massey algorithm is 

after all, a variation of an ancient algorithm discovered in Egypt around 300BC by 

Euclid and known as the Euclid‟s extended algorithm for finding the greatest 

common divisor of two polynomials [11]. 

   

In 1974, Joseph Odenwalder combined the two coding techniques mentioned above to 

form a concatenated code, now referred to as a turbo code. In this arrangement, the 

encoder linked together an algebraic code followed by a Convolution code. 

Performance was further enhanced by using an interleaver between the two encoding 

stages to mitigate any bursts that might be too long for the algebraic decoder to 

handle. This particular structure demonstrated significant improvement over previous 

coding systems. In 1993, Claude Berrou and his associates perfected the turbo code 

and is currently the most powerful forward error-correction code [12]. 

The importance of turbo codes is that they enable reliable communications with 

power efficiencies close to the theoretical limit predicted by Claude Shannon. Since 

their introduction, turbo codes have been proposed for low-power applications such 

as deep-space and satellite communications, as well as for interference prone 

applications such as third generation cellular phone and personal communication 

services.  The major objective here is to achieve maximal information transfer over a 

limited-bandwidth communication link in the presence of data-corrupting factors, like 

noise. 
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The unprecedented revolution in the design and application of very large scale 

integrated (VLSI) circuits combined with the development of powerful computation 

algorithms realizable both in hardware and software culminated in the advent of 

cheap microelectronics, and finally decoders became practical as early as 1981, and 

the entertainment industry adopted a very powerful error control scheme for the then 

new compact disc (CD) players [13]. 

Today, error-control coding is used in many forms in almost every new military 

communications system including the Joint Tactical Information Distribution System 

(JTIDS) and the Jam Resistant Secure Communications (JRSC) system employed on 

the Defense Satellite Communications System (DSCS), and for civilian applications 

such as the Global System for Mobile Communications (GSM) wireless data 

transmission systems, UMTS, etc. 

2.4 SIGNAL QUALIFICATION AND 

QUANTIFICATION METRICS 

 

The impairments to wireless transmitted messages may differ a lot depending on the 

type of channel, but may include: 

 thermal noise and atmospheric noise (additive noise); 

 interference from other sources and system users; 

 reflections and scattering of transmitted radio wave power during propagation 

through the terrain; 

 signal attenuation due to path loss in the radio channels or transmission line 

resistance; 

 inter-symbol interference due to lack of sufficient available bandwidth; 

 Doppler shifts due to relative movements between receiver and transmitter; 

 Non-linear effects, e.g. due to nonlinear power amplifier characteristics; 

 Stains or scratches on a CD-ROM. 

The aim of information theory is to model these impairments in a quantitative way, 

mainly by statistical models. The modeling is used to adduce the qualitative or 

performance limits, and to devise methods for efficient transmission of data over the 

channel – that is, coding algorithms. 
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The ultimate goal of the coding is to exploit the communication channel as well as 

possible. In this endeavor, our major goal is to spend as little as possible of the 

limited physical resources at our disposal, including time, bandwidth, transmit 

power, or disk space - on the transmission or storage of information, in order to 

maximize the number of users, systems, or services that are able to share resources 

[6]. We need at the same time, to ensure that the quality of the information retrieved 

at the receiver end is satisfactory. 

2.4.1 Quality Metric         
By “quality” of a received signal, we usually mean something like “degree of 

similarity to the transmitted message”. The appropriate measure of, and typical 

demands on quality, is dependent on the type of information transmitted and on the 

application or service:  

 For data communications, the criterion might be that the average information bit 

error probability (or bit error rate – BER) should be less than, say, 10
-9

 – whereas 

for speech and video communications, the aural or visual quality perceived by 

human ears or eyes is the most important thing, and a higher BER can usually be 

accepted. 

 The accepted perceptual quality range also vary with the application, and is 

different, e.g. for mobile telephony (low-to-medium quality application) and high 

fidelity audio (very high quality application). 

 Real-time applications such as two-way speech communication also place 

constraints on average delay, buffering, probability of no transmission (“outage”), 

etc. 

The single most important parameter to optimize for the FEC block is arguably the 

bit and/or symbol error rate, and we adopt this as our criterion for the goodness of 

an FEC system. We note however, that this is not necessarily the most meaningful 

measure in all cases. For example, if we consider pulse code modulated (PCM) 

speech, an error in the most significant bit is clearly more detrimental than an error in 

the least significant bit. 

2.4.2 Quantity Metric or Information Content 

The questions we are most likely to face in practice are usually, “What is the 

information content of a given source?” or “What is the capacity of a given channel?” 
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When discussing these issues it is useful to distinguish between two different 

perspectives: 

 How to quantify the information content in the data produced by a source. 

 How to quantify the information content transmitted from a source to a user by 

means of a communication channel. 

Since generation of information is a stochastic process, an event has a low 

information content if its “future” can be forecasted with a high degree of accuracy, 

based on knowledge of its “past”. In this case an observer‟s uncertainty about the 

future of the event is low, which means he will not receive much new information by 

continued observation of the event. 

Thus, an event‟s information content is intimately linked to the a priori degree of 

randomness and uncertainty associated with the event: The more predictable an event 

is, the less knowledge we need to describe or predict it; thus the less information we 

receive by observing it. 

Conversely, if an event is highly unpredictable, a detailed observation of its actual 

development is needed in order to describe it, which means that its information content is 

high. This holds regardless of the physical content of the event in question – sometimes 

referred to as the semantic meaning of the information. 

The above can be restated as saying that, the actual semantic meaning in a message is 

of no consequence for the amount of information carried by the message. All that 

matters, is the degree of predictability; i.e., its statistical properties. 

In a communication context, at least from the second of the two perspectives, the 

“events” under study are usually information messages passed from a source to a 

user. The degree of uncertainty on the receiver side, and the a priori predictability of 

the messages, will then depend on the statistical properties of the information source 

under study, the impairments introduced by the physical communications channel, 

and the way the transmitter and receiver are designed. 



 28 

2.4.3 Information Content of a source 
The output of an information source can be modeled as a random process. The 

information content of this source is described by its entropy and is defined as     

 
jj ppsH 2log)(         ….……………………………  ( 2.2) 

with 1,2,...,j k , and ( )H s measured in information bits per source symbol 

with 1 2{ , ,...., }ks x x x , such that p( jx )  =  jp , the probability of occurrence of 

symbol  xj.    The source entropy as defined above is a measure of average 

information per symbol produced by the source. The entropy of a source provides a 

fundamental bound on the number of bits required to represent that source for full 

recovery. In other words, the average number of bits per source output required to 

encode a source for error-free recovery can be made as close to the entropy of the 

source as we desire, but can not be less than the entropy. 

2.4.4 Information Capacity of a Channel 

The amount of useful source information received by a user is referred to as the 

mutual information between the source and the user. It is important here to 

emphasize the usability of the information received, as the “total information 

content”.  Mutual information is one of the most fundamental information theoretic 

concepts. It can be used to describe not only the capacity properties of 

communication channels, but also the compression possibilities for a given source 

when a certain amount of error (distortion) is accepted in the source representation. 

Consider two given discrete, possibly statistically dependent random variables, 

},...,,{ 21 kxxxX   and },....,,{ 21 kyyyY  . We can think of X as the input to, and 

Y as the output from a communication channel; i.e., Y is a noisy version of X . X and 

Y  have probability distributions p = [ 1,....., kp p ]
T
 and q = [ kqq ,....,1 ]

T
 respectively.  

The conditional probability distribution of jx , given ky , is denoted kjP | . kjP | will then 

describe the probability of jx  being transmitted if ky  is observed at the receiver. 

The mutual information between X and Y is now defined as   

                          )|()(),( YXHXHYXI  ,   …………….……………  (2.3) 
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where )(XH is the entropy of the source that outputs X , and, by definition, 

                          





1

0

)|(
K

k

kqYXH . )|( kyXH  of some information – in this case Y. 

It is simply a measure of the average information content (uncertainty) which is left in 

X when Y is known. 

       i.e.,   )|( YXH   =  - 
kjkj

J

j

K

k

k PPq |2|

1

0

1

0

log..








 …………………(2.4) 

         

)|( YXH can be interpreted as “the entropy of X when Y is observed”. It is a 

conditional entropy, which means that it is based on the a priori knowledge of some 

information   - in this case Y. It is simply a measure of the average information content 

(uncertainty) which is left in X when Y is known.  

 

Mutual information is simply a measure of how much information can be obtained 

about one random variable by observing another. The mutual information of X relative 

to Y (which represents conceptually the average amount of information about X, that 

can be gained by observing Y) is given by equation (2.3) above. 

 

The mutual information I(X ,Y) can be thought of as the information Y gives about X – 

the average reduction in the observer‟s uncertainty about X, which is brought about 

by observing Y. If X is the input to, and Y is the output from a given communications 

channel, H(X|Y) can then be thought of as information “lost” by the channel. 

 

We note that the choice of logarithmic base in Shannon‟s equations for information 

content and mutual information, determines the unit of information entropy that is 

used.  The most common unit of information in current use is the bit, based on the 

binary logarithm. 

2.4.5 Channel Capacity of a Memory less Channel 
A discrete-memoryless channel (DMC) is completely described by its input and 

output alphabets, and the channel transition probability matrix. One special case of a 

DMC is the binary symmetric channel (BSC) that can be considered as a 



 30 

mathematical model for binary transmission over a Gaussian channel with hard 

decision at the output. This channel is discussed in detail in section 2.5.1. 

Most physical channels used to transmit information are subject to noise and 

distortion of various kinds, resulting in errors in the received waveforms/channel 

symbols. For simplification purposes, let us consider memoryless channels, which 

transmit discrete- or continuous-valued symbols in discrete time intervals. 

Memorylessness of a channel means that the added noise at a given time instance does 

not influence the channel output in any other time instances. 

Let us also introduce the notion of a memoryless channel with a channel capacity at a 

cost S . The most obvious “cost” in a communication system is perhaps an upper 

limit on the average symbol power available for transmission over a channel. Another 

possible cost is that of bandwidth. For simplicity, we consider the case where the 

bandwidth is given, and thus is not a subject for optimization. The capacity at cost S 

is still defined in terms of a maximum of the mutual information I(X,Y) between the 

channel input and the output, as 

SXX
max  I(X,Y)  

bits per channel use, where, XS is the set of all possible channel symbol distributions 

(discrete or continuous depending on the channel) such that the average cost per 

channel use, E[s], is less than or equal to the constant S. 

2.5 INFORMATION-THEORETIC TOOLS 

 

Harnessing information-theoretic tools for the investigation of wireless channels has 

not only resulted in enhanced understanding of the potential and limitations of those 

channels, but also in fact provided on many occasions the right guidance to the 

specific design of efficient communications systems. 

 

The rapid advancement in technology and the exploding demand for efficient high-

quality and volume of digital wireless communications over almost every possible 

media and for a variety of applications (such as cellular, personal, data networks, etc.) 

reveals the dramatic role information theory has been playing in this trend. 
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Channel capacity is one of the main design parameters of a wireless channel, and it is 

the most important performance measure.  

 

We also use information theoretic tools to establish how the structure of fading 

channels can affect code design. Application of fading channel equalization 

techniques is only possible after thorough understanding of the theoretic basis of the 

multipath channel behaviour. 

 

In the recent past, the world has experienced a rapid and tremendous growth in digital 

communications, especially in the fields of cellular and personal communication 

services, satellite, and computer communication. In these communication systems, 

information is represented as a sequence of binary bits. The binary bits are then 

mapped (modulated) onto analog signal waveforms (carriers) and transmitted over a 

communication channel. The wireless communication channel is characterized by the 

multipath signal propagation problem and noise and interference are added, leading to 

the corruption of the transmitted signal. At the receiver, the channel-corrupted and 

transmitted signal has to be mapped back to binary bits. 

 

The received binary information is an estimate of the transmitted binary information. Bit 

errors may result due to the transmission and the number of bit errors depends on the 

amount of noise and interference, and the impact of the multipath phenomena in the 

wireless communication channel. 

 

Channel coding is often used in digital communications to protect the digital 

information from the effects of multipath phenomena, noise and interference and thus 

reducing the number of bit errors. Channel coding is mostly accomplished by 

selectively introducing redundant bits into the transmitted information stream. These 

additional bits facilitate detection and correction of bit errors in the received data 

stream and provide more reliable information transmission.  

 

The cost of using channel coding to protect the information is a reduction in data rate 

or an expansion in bandwidth. According to Shannon‟s capacity theorem, the capacity 

of a given communication channel depends on the bandwidth of the channel, and the 

signal-to-noise ratio of the system. The maximum rate at which information bits can 
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be transmitted along the wireless channel will depend on the capacity of that channel. 

That is why information theory is relevant in order to be able to apply information-

theoretic tools to the digital communication problem. 

 

Communications over a channel, such as the wireless channel or Ethernet cable, is the 

primary motivation of information theory. We are all familiar with such channels, 

however, such channels often fail to produce exact reconstruction of a signal; noise, 

outage (periods of silence), and other forms of signal corruption often degrade 

quality. How much information can one hope to communicate over such a noisy or 

rather imperfect channel? Under such stochastic constraints, we would wish to 

maximize the amount of information or the signal we can communicate over that 

channel. The appropriate measure for this is the mutual information and maximum 

mutual information is referred to as the channel capacity as expressed in equation 

(2.1). 

2.5.1 The Binary Symmetric Channel 

The simplest example of a communication channel is the binary symmetric channel 

(BSC). This channel, which models well e.g. the storage on a CD, or an optical fibre 

with binary modulation, takes binary symbols (denoted 0 and 1, for simplicity) as 

input and transmits them with a symmetric probability of error, denoted p. That is to 

say, the probability of a transmitted 0 being received as a 1 is p, as is the probability 

of a 1 being received as a 0. Note that p is limited to [0,0.5] since, if p were higher 

than 0.5, the bit error rate could be improved by inverting all the received bits. 

 

For a binary symmetric channel, the maximum mutual information or channel 

capacity is given by the expression 

              C   =   1 + p log2(p) + (1-p) log2(1-p),  ……………………….(2.5)        

 [information bits per channel symbol].                

  If p  =  0.01,  then   C     0.919.        

Unfortunately, Shannon‟s noisy channel does not indicate how the good codes cannot 

be obtained in practice. The probability of error can be made arbitrarily small at the 

expense of the rate of transmission (R= k/n). 
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Other Desirable Qualities for Encoding Schemes:  Apart from probability of 

decision error, to be as small as possible, we desire to have encoding schemes which 

[1]: 

 are easy to implement and lead to easy decoding 

 lead to code words of moderate lengths (c.f. repetition codes which require very 

long code words to achieve small decision probability of error). 

The higher the probability p is (up to 0.5), the more noise there is on the channel, and 

the smaller the capacity is. 

                                                                  1 - p 

 

 

 

                                                               p                                 Output 

Input 

                                                               p   

                                                                   

        0                                                                                           0 

                               1 – p 

Fig.2.2   Characteristics of a binary symmetric channel (BSC) 

2.5.2 The Additive White Gaussian Noise   

   Channel 

Another important channel model is the band-limited additive white Gaussian noise 

(AWGN) channel with an input power constraint. A schematic model for this channel 

is shown in Fig. 2.3 below. 

   

 

 

 

 

s(t): Input signal ;  H(f) : Channel transfer function, n(t) : Noise;    y(t) : Output signal 

   

  Fig. 2.3:  Additive White Gaussian Noise Channel  
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If we consider a memoryless continuous-amplitude channel with additive Gaussian 

zero-mean noise (AWGN) of power (variance) N, we have the so called Gaussian 

memoryless channel, and the noise is statistically independent of the channel input. 

The noise power is uniformly distributed in frequency (hence white noise), while the 

noise samples follow a Gaussian distribution. 

 

This noise model is valid for all cases where there are many independent sources of 

noise; in particular, it models thermal noise in electronic components well. In cellular 

mobile radio systems, with many active users transmitting in the same frequency 

band, it is also a good approximation when modeling interference between users. 

 

We can assume further that the channel is bandlimited to W Hz and that the signals to 

be sent are critically sampled, i.e., at fs = 2W Hz. This is a good model e.g. for a 

wireless mobile telephone channel. For such a channel, Shannon derived the 

following famous formula for the capacity at received signal power S (which is the 

same as transmitted power if, as usually done for this channel model, we assume that 

no signal attenuation is present in the channel): 

               )(SC  2.log 1W SNR  2.log 1W SNR ,  .………………… (2.6) 

measured in information bits per second.  

 

SNR denotes channel signal-to-noise ratio; i.e., the ratio between received signal 

power and noise power. 

 

The weakness of this expression for C(S) is that it does not take into account the 

practical fact that thermal (white) noise power in a communication system is 

proportional to the system bandwidth. Thus, operating at the same SNR at different 

bandwidths means that the transmit power is different for each bandwidth. 

 

Shannon's theorem, is a statement in information theory that expresses the maximum 

possible data speed that can be obtained in a data channel because according to this 

theorem, the highest obtainable error-free data speed, expressed in bits per second 

(bps), is a function of the bandwidth and the signal-to-noise ratio.  

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci801374,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci211770,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213820,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci212167,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211634,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213018,00.html
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Among several other remarkable and fundamental insights, Shannon proved that it is 

possible to communicate without error (or with an arbitrarily low error rate) on a 

noisy channel as long as just one requirement is met: the special ratio Eb/N0 must be 

greater than ln(2), the natural logarithm of 2. Numerically, that is about 0.693, or 

 -1.6 decibels (dB) in electrical engineering terms. This number is now known 

naturally enough as the Shannon bound. This is a theoretical limit; any real receiver 

will always do worse. No matter how clever you are, and no matter how much 

computer power you have, you cannot exceed the Shannon limit and communicate 

without error. 

 

A more fair comparison [6] from a resource point of view is obtained by normalizing 

the SNR with respect to the bandwidth, i.e., expressing the SNR as the ratio of 

transmitted signal power S to noise power per Hertz bandwidth, denoted by No   

[W/Hz]. Doing this yields the capacity of an AWGN channel as follows: 

         C    =   B log2 

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o

1            [information bits per second] ….(2.7)        

which implies a finite (assuming finite transmit power) asymptotic upper bound on 

capacity as the bandwidth is increased to infinity: i.e., 
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S
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Let: 

x  =  S/NoB, 

 so that 

http://en.wikipedia.org/wiki/Eb/N0
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
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The Shannon limit for a given noisy channel, yields the maximum rate at which 

error-free communication is possible. 

 

For a desired actual transmission rate R    C   [information bits/second] this can be 

used to obtain a lower bound on the transmit energy per information bit which must 

be used if error-free transmission is to be at this rate. The energy spent per channel 

symbol is 

Eb   =  
R

S
 [Joule/information bit]. 

Thus,   

S  =  EbR, 

so, from equation (2.7) 

  R/B       C/B   =   log2 
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Or, 

           Eb      No 
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The absolute lower bound for error-free transmission over the channel using any 

transmission scheme is obtained from this equation by letting the actual transmission 

rate go to zero: 

Using L‟Hopital‟s rule 
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           i.e.,                              Min Eb  =  No ln(2),    ………………………  (2.11) 

 

or -1.6 dB on the decibel scale.  

 

Shannon‟s channel capacity theorem states that the channel capacity of a continuous 

channel of bandwidth B Hz, perturbed by bandlimited Gaussian noise of power 

spectral density No/2, is given by 

                      )(SC  
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where S is the average transmitted signal power and the average noise power  

                           N     =     BNdfN o

B

B

o 
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)2/( , .. …… …………………..(2.13) 

where f is the instantaneous signal frequency and oN , the spectral noise density is 

constant. 

If B = 3 kHz and S/N is maintained at 30dB for a typical telephone channel, the 

channel capacity C(S) is about 30 kbits/s. According to Claude Shannon, every 

channel has associated with it a capacity, C(S), measured in bits per second 

(modulated symbol). Channel capacity is an upper bound on information rate, r. 

There exists a code of rate r < C(S) that achieves reliable communications. Reliable 

implies an arbitrarily small error probability. 

 

The theorem implies that error-free transmission is possible if we do not send 

information at a rate greater than the channel capacity. Thus, the channel capacity 

theorem defines the fundamental limit on the rate of error-free transmission for a 

power limited, band-limited Gaussian channel. The essential elements of Shannon‟s 

formula are: 
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 Proportionality of capacity to bandwidth B 

 Signal power S 

 Noise power N, and 

 The logarithmic function. 

The channel bandwidth sets a limit to how fast symbols can be transmitted over the 

channel. The signal to noise ratio (S/N) determines how much information each 

symbol can represent. The signal and noise power levels are, of course, expected to 

be measured at the receiver end of the channel. Thus, the power level is a function 

both of transmitted power and the attenuation of the signal over the transmission 

medium (channel). The choice of the logarithm base determines the unit of 

information entropy that is used, here being the binary digit or bit. 

 Early space probes like Mariner used a type of error-correcting code called a block 

code, and more recent space probes use Convolution and turbo codes. Error-

correcting codes are also used in CD players [13], high speed modems, and cellular 

phones. Modems use error detection when they compute checksums, which are sums 

of the digits in a given transmission modulo some number. The International Standard 

Book Number (ISBN) used to identify books and the Universal Product Codes (bar 

codes), also incorporate a check digit. 

2.6 CHANNEL CODING PROCESSES 

 

In data communications, coding is used for controlling transmission errors induced by 

channel noise or other impairments such as fading and interference, so that error-free 

communication can be achieved. In data storage systems, coding is used for 

controlling storage errors (during retrieval) caused by storage medium defects, dust 

particles and radiation so that error-free storage can be achieved. Ideally, we would 

like to communicate with the least probability of error and at a substantially high 

speed (rate). 

 

Coding theory uses mainly algebraic and geometric tools to contrive efficient codes 

for various situations. The major objective of coding theory is to enable the 

transmission of data over a noisy channel with as few errors as possible. Redundancy 

is introduced in the codes to facilitate the detection and/or correction of errors.   
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In digital electronic systems, information is carried by signals with discrete 

amplitudes so that the individual message bits can be more easily distinguished from 

one another. But when this digital information needs to be stored or transmitted over 

long distances or at very high speeds, noise and other hazards become an issue. 

Sources of such unwanted hazards include thermal noise due to motion of electrons, 

damage to the storage media, multipath fading or coupling from other energy sources. 

 

In communication systems, one way to decrease the probability of bit errors is to 

increase the power of the transmitted signal until it is much higher than the noise. But 

the amount by which the signal power can be increased may be limited by the rating 

of the electronic circuits in the transmitter and even at the receiving end. This power 

level may also be regulated, as in the case of radio signals whose levels are specified 

by the Uganda Communications Commission (UCC) here in Uganda. 

 

So, clearly we need some other means of controlling the probability of error. Forward 

error correction (FEC), or channel coding, provides this added dimension. By adding 

redundant symbols to the transmitted or stored digital information, we can achieve 

not only a means of error detection, but error correction as well. 

 

An error-correcting code is an algorithm for expressing a sequence of numbers such 

that any errors which are introduced can be detected and corrected (within certain 

limitations) based on the remaining numbers. The study of error-correcting codes and 

the associated mathematics is known as coding theory.                        

 

Error detection is much simpler than error correction, and one or more “check” digits 

are commonly embedded in credit card numbers in order to detect mistakes.              

 

Coding is achieved by adding properly designed redundant digits (bits) to each 

message. The redundant digits (bits) are used for detecting and/or correcting 

transmission (or storage) errors. Time diversity or in-band frequency diversity can be 

used to improve a receiver‟s performance. Diversity is a brutal force use of 

redundancy in which each bit or symbol is repeated several (n) times. From the 

coding point of view, diversity involves the use of a trivial code of rate 1/n. Using a 
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sophisticated code like the turbo code leads to a more efficient system while 

maintaining the benefits of the diversity concept. 

2.6.1 Why channel coding is necessary 

Since the beginning of the 1980s great strides made in the development of large scale 

integrated circuits led to tremendous growth in digital communications especially in 

the fields of cellular/PCS, satellite, and computer communication. In these 

communications systems, the information is represented as a sequence of binary bits. 

The binary bits are then mapped (modulated) to analog signal waveforms and 

transmitted over a communication channel. The communication channel introduces 

noise, multipath phenomena and interference, which corrupts the transmitted 

information signal. At the receiver, the corrupted signal has to be mapped back to the 

original message. However, due to the corruption experienced over the channel, the 

received binary information is often an approximation of the transmitted binary 

information. Bit errors may occur due to the channel impairments and the number of 

bit errors depends on the extent of this problem. 

 

Channel coding is often used in digital communication systems to protect the digital 

information from noise and interference and to reduce the number of bit errors. 

Channel coding is mostly accomplished by selectively introducing redundant bits into 

the transmitted information stream. The additional bits facilitate the detection and 

correction of bit errors in the received data stream and provide more reliable 

information transmission and storage. The cost of using channel coding to protect the 

information is a reduction in data rate and/or an undesirable expansion in the required 

bandwidth. 

2.6.2 Types of Channel Codes 
There are several types of channel codes. The first major classification is block codes 

versus convolutional (Trellis) codes. Each of these groups can be further divided into 

linear versus non-linear codes. Linear codes of interest are encoded using the 

methods of linear algebra and polynomial arithmetic. Alternatively, we talk of block 

codes versus convolution codes. A block code is a type of channel coding that adds 

redundancy to a message so that, at the receiver, one can decode the code with 

minimal (theoretically zero) errors.  Block codes operate in a block-by-block fashion 

and each code word depends only on the current input message block. 

http://en.wikipedia.org/wiki/Channel_coding
http://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
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The main characterization of a block code is that it is a fixed length channel code. 

Typically, a block code takes a k-digit information word, and transforms this into an 

n-digit code word. The (n-k) parity bits of a linear block code are linear combination 

sums of the k message bits. 

The first block code was developed by Richard W. Hamming in 1947 and is called 

the Hamming code. It actually consists of a whole class of codes with the following 

characteristics: 

 Block length: n = 2
m
 – 1 ; m is the number of parity check bits 

 Information bits: k = 2
m

 – m – 1 

 Parity check bits: n – k = m 

 Correctable errors: t = 1 

These conditions [42] are true for m > 2. For example, with m = 4, there are n = 15 

total bits per block or code word, k = 11 information bits, n – k parity check bits, and 

the code can correct t = 1 error. A representative Hamming code example is 

1 00101001 01 0010,   where, the four bits on the right (0010) are the parity 

checkbits. By choosing the value of m, we can create a single error correcting code 

that fits our block length and correction requirements. This one is customarily 

denoted as a (15,4) code, telling us the total number of bits in a code word (15) and 

the number of inormation bits (4). 

The Golay code is another block code, more powerful than the Hamming code, and 

geometrically interesting. This is a (23,12) code discovered by Marcel J.E. Golay in 

1949. It may also be extended using an overall parity bit to make a (24,12) code. Its 

minimum distance is seven, so it can detect up to six errors, or correct up to  t = (7-

1)/2 = 3 errors. There is one aspect of the Golay and Hamming codes that makes them 

interesting, they are basically perfect. With any of these codes, the code words can be 

considered to reside within spheres packed into a region of space. The entire space is 

GF(2
m
). Each sphere contains a valid code word at its centre and also all the valid 

code words that correct to the valid code word, those being a distance of three or 

fewer bits from the centre in the case of the Golay code (t = 3). If there are orphan 

[42] binary words outside the spheres, then the code is termed imperfect. 
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The BCH code is a block code discovered by Bose and Chaudhuri (1960), and 

independently by Hocquenghem (1959). BCH codes are multiple error correcting 

codes and a generalization of the Hamming codes. Possible configurations of BCH 

codes for m   3 and t  < 2
m-1

  are: 

 Block length : n = 2
m
 – 1 

 Parity check bits : n – k   mt 

 Minimum distance : d   2t + 1 

The code words are formed by taking the remainder after dividing a polynomial 

representing the information bits by a generator polynomial. The generator 

polynomial is selected to give the code its characteristics. All code words are 

multiples of the generator polynomial [42]. 

A convolution code (alternatively referred to as a linear Trellis code) is a forward 

error-correction scheme, whereby the coded sequence is algorithmically achieved 

through the use of current data bits plus some of the previous data bits from the 

incoming stream.  Linear Trellis codes are known as convolution codes because the 

code sequence can be viewed as the discrete-time convolution of the message 

sequence with the impulse response of the encoder.  

 

Linear codes are defined by a linear mapping over an appropriate algebraic system, 

such as Galois Fields, from the space of input messages to the space of output 

messages. Galois fields make use of mathematical constructs known as finite fields. 

This algebraic structure allows significant simplification of encoding and decoding 

equipment. 

 

A convolution code is generated when: 

 Each k-bit information symbol (each k-bit string) to be encoded is transformed 

into an n-bit symbol, where k/n is the code rate (n >= k) and   

 The transformation is a function of the last m information symbols, where m is 

the constraint length of the code. 

 

Convolution codes operate on streams of data bits continuously, inserting redundant 

bits used to detect and correct errors. Block codes differ from convolution codes in 
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that the data is encoded in discrete blocks, and not continuously [42]. The basic idea 

employed is to break the information to be transmitted into chunks, appending 

redundant check bits to each block, these being used to detect and correct errors. Each 

data plus check bits block is called a code word. A code is linear when each code 

word is a linear combination of one or more other code words. This is a concept 

originating from linear algebra and often the code words are referred to as vectors for 

that reason. 

 

Another characteristic of some block codes is a cyclic nature. This means that any 

cyclic shift of a code word is also a code word. So linear, cyclic, block-code code 

words can be added to each other and shifted circularly in any way, and the result is 

still a code word. 

 

2.6.3    Coding For Wireless Channels [18] 

Coding allows bit errors introduced by transmission of a modulated signal through a 

wireless channel to be either detected or corrected by a decoder in the receiver.  

Coding can be considered as the embedding of signal constellation points in a higher 

dimensional signaling space than needed for communications. By going to a higher 

dimensional space, the distance between points can be increased, which provides for 

better error detection and correction. 

 

There is a difference between codes designed for purely AWGN channels and for 

fading channels. Codes designed for AWGN channels do not typically work well on 

fading channels since they cannot correct for long error bursts that occur in deep 

fading.    Normally, a code designed for an AWGN channel only, has to be modified 

by combining it with some interleaving in order to make it suitable for fading 

channels. Thus, the criterion for the code design has to change to provide for fading 

diversity. Other coding techniques to combat performance degradation due to fading 

include unequal error protection codes and joint source and channel coding. 

2.6.4 Code Design Parameters 

The basic design parameters for both additive white Gaussian noise (AWGN) and 

fading environments include minimum distance, coding gain, bandwidth expansion, 

and diversity order. While code designs for AWGN environments are not directly 
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applicable to fading channels, codes for fading channels and other codes used in 

wireless systems (e.g. spreading codes in CDMA) require the background in code 

design fundamental techniques for AWGN channels. 

 

We also need to understand the theory of concatenated codes and their evolution to 

turbo and low density parity check (LDPC) codes for AWGN channels. These, rather 

extremely powerful codes, exhibit near-capacity performance with reasonable 

complexity levels [18]. 

 

Normally, a code designed for an AWGN channel only, has to be modified by 

combining it with some interleaving in order to make it suitable for fading channels. 

Thus, the criterion for the code design has to change to provide for fading diversity 

[18].  

Interleaving is a practical way of enhancing the error correcting capability of a given 

code. It is a process of rearranging the ordering of a data sequence in a one to one 

deterministic format. Code designs for fading channels combine block and 

convolution codes with interleaving, and modify the coding process to provide for 

maximum fading diversity. 

 

Although diversity gains can also be obtained by combining coded modulation with 

symbol or bit interleaving, bit interleaving is generally preferred because it provides 

much higher diversity gains. Coding combined with interleaving provides diversity 

gain in the same manner as other forms of diversity, with the diversity order built into 

the code design. The interleaver spreads out bursts of errors over time, so it provides a 

form of time diversity. This diversity is exploited by the inherent diversity in the code. 

 

Unequal error protection is an alternative to diversity in channel fading mitigation. In 

these codes bits are prioritized, and high priority bits are encoded with stronger error 

protection against deep fades. Since bit priorities are part of the source code design 

process, unequal error protection is a special case of joint source and channel coding 

error mitigation. 
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2.6.5 Code Design for Error Correction 
The main reason why we apply error correction coding in a wireless system is to 

reduce the probability of bit or block error. The errors may be due to noise or due to 

fading phenomena or any other causes.   

                                  Pb
 

 

 

 

 

 

 

 

 

 

 

                

 

 

  

 

                                 

 

 

 

   Fig. 2.4       Coding gain in AWGN channels 

 

The bit error probability, Pb for a coded system is the probability that a bit is decoded 

in error. The block error probability Pbl, also called the packet error rate, is the 

probability that one or more bits in a block of coded bits are decoded in error.  

 

Block error probability is useful for packet data systems where bits are encoded and 

transmitted in blocks. The amount of error reduction provided by a given code is 

typically characterized by its coding gain in AWGN and its diversity gain in fading 

channel environments. 

 

Coding gain in AWGN is defined as the amount by which the SNR can be reduced 

under the coding technique for a given  Pb or  Pbl.    

Fig.2.4 illustrates the probability of bit error curves for uncoded and coded cases.  The 

gain Cg1 at Pb = 10
-4

 is less than the gain Cg2  at Pb = 10
-6

, and there is negligible 

coding gain at Pb = 10
-2

. 
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The coding gain in AWGN channels is generally a function of the minimum Euclidean 

distance of the code, which equals the minimum distance in the signal space between 

code words or error events.  

 

Thus codes designed for AWGN channels maximize their Euclidean distance for good 

performance. 

 

Error probability with or without coding tends to fall off with SNR as a waterfall 

shape at low to moderate SNRs as depicted in Fig.2.4. While this waterfall shape 

holds at all SNRs for uncoded systems, coded systems exhibit error floors as SNR 

grows. The error floor also, kicks in at a threshold SNR which depends on the code 

design. For SNRs above this threshold, error probability falls off much more slowly, 

due to the fact that minimum distance error events eventually dominate code 

performance in this SNR regime [18]. 

Code Imperfectness 

We define the imperfectness of a given code as the difference between the code's 

required Eb/No to attain a given word error probability (Pw), and the minimum 

possible Eb/No required to attain the same Pw, as implied by the sphere-packing bound 

[18] for codes with the same block size k and code rate r.  

 

The performance limit corresponding to the sphere-packing bound [18] would be 

reached with equality only if the code were a perfect code for the AWGN channel, 

i.e., if equal-size cones could be drawn around every code word so as to completely 

fill n-dimensional space without intersecting. Note that perfectness for the 

unconstrained-input AWGN problem requires that the entire continuum of n-

dimensional Euclidean space be filled by these non-intersecting cones, not just the 

discrete points that might be occupied by binary code words. Thus, under this 

definition, even the (7,4) Hamming code and the (23,12) Golay code, which are rare 

examples of perfect binary codes, do not qualify as perfect codes for the 

unconstrained-input AWGN channel. Indeed, Shannon mentions in his 1959 paper 

that such codes only exist if k=1or n=1 or 2.  
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2.7 BLOCK CODES   
If a source message of k digits is mapped into a structured sequence referred to here 

as a channel code or code word of n digits (n > k), the mapping operation is called 

block coding. If the encoding operation is independent of the past encodings, it is said 

to be memoryless. The collection of all possible code words from the source is called 

a block code in this case. 

 

One major characteristic of block codes is that they are based rigorously on finite 

field arithmetic and abstract algebra. They can be used to either detect or correct 

errors. Block code encoders accept a block of k information bits and produce a block 

of n coded bits.  Predetermined rules are used to add n – k redundant bits to the k 

information bits to form the n coded bits. These codes are commonly referred to as (n, 

k) block codes. Examples of some of the commonly used block codes are Hamming 

codes, Golay codes, BCH codes, and Reed-Solomon codes (use non-binary symbols). 

There are many ways of decoding block codes and estimating the k information bits.  

 

Algebraic coding (also known as block coding) was the only type of forward error-

correction coding in use when Claude Shannon published his seminal paper, 

“Mathematical Theory of Communications”, in 1948. With this technique, the 

encoder intersperses parity bits into the data sequence using a particular algebraic 

algorithm to identify and correct any errors caused by channel corruption. 

2.7.1 Linear Block Codes 

A block code is called a linear code when the mapping of the k information bits to the 

n code word symbols is a linear mapping. Linear block codes are defined simply as a 

subspace of a vector space. Binary linear codes are subspaces of a vector space over 

the finite Galois field, GF(2). These codes are the most widely used and can be 

represented in several ways. The most useful representation is through a parity-check 

matrix (see section 2.12 later). A parity check matrix is a matrix whose rows generate 

a subspace that is orthogonal to the subspace that represents the code. 

 

Linear block codes are conceptually simple codes that are basically an extension of 

single-bit parity check codes for error detection. A single-bit parity check code uses 

one extra bit in a block of n data bits to indicate whether the number of 1s in a block 
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is odd or even. Thus, if a single error occurs, either the parity bit is corrupted or the 

number of detected 1s in the information bit sequence will be different from the 

number used to compute the parity bit: in either case the parity bit will not correspond 

to the number of detected 1s in the information sequence, so the single error is 

detected. Linear block codes extend this notion by using a larger number of parity bits 

to either detect more than one error or correct for one or more errors.  Unfortunately, 

linear block codes, along with Convolution codes, trade their error detection or 

correction capability for either bandwidth expansion or a lower data rate. 

2.7.2 Binary Linear Codes 
Let us restrict ourselves to the simpler case of binary codes, where the original 

information and the corresponding code consist of bits taking a value of either  0 or 1, 

and also assume that data is given in form of blocks with symbols taken from an 

alphabet A, i.e.,  A  = Z2 for a binary system and the blocks will be in form of bit 

strings (binary codes). 

 

A binary block code generates a block of n coded bits from k information bits [18]. 

We call this an (n,k) binary code. The coded bits are also called code word symbols. 

The n code word symbols can take on 2
n
 possible values corresponding to all possible 

combinations of the n binary bits. We select 2
k
 code words only from these 2

n
 

possibilities to form the code, such that each k bit information block is uniquely 

mapped to one of these 2
k
 code words.  

  

Assume the following notation: For k   1, denote A
k
 as the set of strings a1…..ak of 

length k of symbols from A. 

 

The message can be thought of as a string a  =  a1…….ak from A
k
 .  “Redundancy” is 

added by “encoding” a into a string c  =  c1…….cn      A
n
  of some longer length n  >  

k in a certain way. We call c a code word. 

 

A block code is called a linear code when the mapping of the k information bits to the 

n code word symbols is a linear mapping. The set of all binary n-tuples A
n
 is a vector 

space over the binary field, which consists of two elements 0 and 1. The binary field 

is characterized by two operations: binary addition (modulo 2 and standard 
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multiplication. A subset S of A
n
 is called a subspace if it satisfies the following 

conditions [18]: 

1. The all zero vector is in S. 

2. The set S is closed under addition, such that if Si   S and Sj S,  then  

            Si + Sj 
 
S. 

 

An (n,k) block code is linear if the 2
k
 length-n code words of the code form a 

subspace of A
n
. Thus, if Ci and Cj are two code words in an (n,k) linear block code, 

then Ci + Cj must form another code word of the code. 

2.7.3 Hamming Distance 

Hamming distance is a fundamental parameter associated with an [n, M] – block code 

C, where M refers to the number of members or elements in C. Before we can define 

the Hamming distance for a code, we must define the Hamming distance between two 

code words. 

 

Definition: The Hamming distance d(a, b) between two code words a and b is the 

number of coordinate positions in which they differ. 

 

The Hamming distance d(a, b) between two strings 

a  =  a1a2……....an, 

b  =  b1b2…..….bn, 

both   A
n
  is defined as the number of entries j such that    ai     bi  . 

 

Definition: For the [n, M] - block code C   A
n
 , the Hamming distance d for C is 

defined as the minimum of d(a, b) over all a, b      C, with a     b. 

 

Alternatively, the Hamming distance d of the block code C is  

             d = min{d(a, b): a, b belong to C, a   b}. 

 

In other words, the Hamming distance of a code is the minimum distance between 

two distinct code words, over all pairs of code words in C. 

Example: For the [5, 4] – binary code C  =[00000, 10101, 01011, 11110],  the 

Hamming distances between distinct code words are; 
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d(00000, 10101)  =  3;  d(00000, 01011)  =  3; 

d(00000, 11110)  =  4;  d(10101, 01011)  =  4; 

d(10101, 11110)  =  3;  d(01011, 11110)  =  3; 

 

Thus C has Hamming distance d  =  3. 

 

If the size of C gets larger, this method of computing the Hamming distance between 

each of the (M ||2) pairs of code words of an [n, M] – code becomes very time – 

consuming.  In this case, a more efficient method is available to deal with linear codes 

and uses a parity check matrix as discussed in section 4.3.2. 

 

We can also define the Hamming distance between two code words Ci and Cj, 

denoted as d(Ci,Cj) or dij, as the number of elements in which they differ: 

)()(
1

lClC j

n

l

i 


ijd  …………………………………..(2.14) 

where Cm(l) denotes the l-th bit in Cm.  Since the Hamming distance between any two 

code words equals the weight of their sum, we determine the minimum distance 

between all code words in a code by just looking at the minimum distance between all 

code words and the all zero code word. 

 

Intuitively, the greater the distance between code words in a given code, the less 

chance that errors introduced by the channel will cause a transmitted code word to be 

decoded as a different code word and therefore, the minimum distance of a linear 

block code is a critical parameter in determining its probability of error. 

 

Some properties of the Hamming distance on A
n
 are: 

 d(a, b)     0  with equality if and only if a  =  b. 

 d(a, b)  =  d(b, a)   for all  a  =  b. 

 d(a, b)  +  d(b, c)    d(a, c)  for all a, b, c  (the Triangle Inequality). 

 

Any function satisfying these three properties is called a metric, so the Hamming 

distance d  is a metric. 
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If we are encoding k – bit strings (messages) into n – bit code words then we call R  =  

k/n  information bits per code word symbol, the rate, or rate of transmission of the 

code, and n – k, the redundancy of the code. If we assume that code word symbols are 

transmitted across the channel at a rate of Rs symbols/second, then the information rate 

associated with an (n,k) block code is Rb = R.Rs = (k/n)Rs bits/second. Thus we see that 

block coding reduces the data rate compared to what we obtain with uncoded 

modulation by the code rate R. 

 
We note that as n increases, the redundancy of the code increases, however, the rate 

decreases, and error correction capability increases. This implies that improving error 

correction properties may be at the expense of a drop in efficiency. The code to be 

used will need to be chosen after considering the cost and error correction needs. 

 

Note:  The properties of concern in using codes include: 

 Efficiency 

 Cost of transmitting data, and 

 Error detection/correction capabilities. 

Rate ( R) and redundancy give a rough measure of the first two properties. 
 

2.8 CONVOLUTION CODES 
Convolution encoders process the incoming bits in streams rather than in blocks. The 

paramount feature of convolution codes is that the encoding of any bit is strongly 

influenced by the bits that preceded it (that is, the memory of past bits). A convolution 

decoder takes into account such memory when trying to estimate the most likely 

sequence of data that produced the received sequence of the code bits.     

 

Historically, the first type of convolution decoding, known as sequential decoding, used 

a systematic procedure to search for a good estimate of the message sequence; 

however, if such an information sequence from the source is divided into (short) blocks 

of k digits each, and each k-digit sequence (message) is encoded into an n-digit coded 

block, such that the n-digit coded block does not only depend on the k-digit message 

block, but also on m ( 1 ) previous message blocks, the encoder is said to possess 

memory of order m.  
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In this case, the information is encoded into a coded sequence. The collection of all 

possible code sequences is called an (n,k,m) convolutional code. The ratio k / n is 

called the code rate. Convolutional codes were introduced in 1955 and are currently 

widely used in practice.  

 

A convolution code can also be defined as a type of error-correction code in which 

procedures employed require a great deal of memory, and typically suffer from buffer 

overflow and non-graceful degradation: 

 Each k-bit information symbol (each k-bit string) to be encoded is transformed 

into an n-bit symbol, where n > k and 

 The transformation is a function of the last m information symbols, where m is the 

number of memory registers used in the implementation of the code. 

 

 Convolution codes are commonly specified by the three parameters, (n,k,m) where m  

is the number of shift memory registers used in the implementation of the code. These 

codes can also be described using the two parameters: the code rate and the 

constraint length. 

 

The code rate, k/n, is a measure of the efficiency of the code. Commonly, the k and n 

parameters range from 1 to 8, and m from 2 to 10, and the code rate from 1/8 to 7/8 

except for deep space applications where code rates as low as 1/100 or even longer 

have been employed.   

 

The constraint length parameter, K, denotes the "length" of the convolution encoder, 

i.e. how many k-bit stages are available to feed the combinatorial logic that produces 

the output symbols. Closely related to K is the parameter m, which indicates how 

many encoder cycles an input bit is retained and used for encoding after it first 

appears at the input to the convolution encoder. The m parameter can be thought of as 

the memory length of the encoder.          

 

Manufacturers of convolution code chips specify the code differently, namely as 

(n,k,L). Here the quantity L is called the constraint length, and is defined by the 

expression: 
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L   =  k(m-1).        (4.2) 

 

 v1 

 

 

 

 v 

   

 

Fig.2.5   Convolution encoder with 3 memory registers, 1  input and  3 output 

    bits.     
The constraint length L represents the number of bits in the encoder memory that 

affect the generation of the n output bits. The convolution code structure can easily be 

deduced from its parameters.  Begin by drawing m boxes to represent the m memory 

registers. Then draw n modulo-2 adders to represent the n output bits. Now connect 

the memory registers to the adders using a generator polynomial as illustrated in 

Fig.2.5. 

 

This is a rate1/3 code. Each input bit is coded into 3 output bits. The constraint length 

of the code is 2. The 3 output bits are produced by the 3 modulo-2 adders by adding 

up certain bits in the memory registers. The selection of which bits are to be added to 

produce the output bit is called the generator polynomial (g) for that output bit. For 

example, the first output bit has a generator polynomial of (1,1,1). The output bit 2 

has a generator polynomial of (0,1,1) and the third output bit has  a polynomial of 

(1,0,1). The output bit is just the sum of these bits. 

   

mod)(

mod)(

mod)(

113

2102

21011













uuv

uuv

uuuv

 and …………………..(2.16  

The polynomials give the code its unique error protection quality. One (3,1,4) code 

can have completely different properties from another one depending on the 

polynomial chosen. 

u1 
uo u-1 

(1,1,1) 

(1,0,1)  

(0,1,1) 

k bits 
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2.8.1 The D-Transform and Generator Polynomials 

of Recursive Processes 
 A recursive process involves a system with an output variable, which is not only 

dependent on current values of the input variables but also dependent on previous inputs 

or state values. For instance, a convolution encoder is an example of a recursive finite-

state machine (FSM) used to generate a convolution code. We can represent a typical 

convolution encoder using the block diagram in Fig.2.6. This FSM has a state 

],,[ 321  iiii uuu , which consists of the past three information symbols. It is a 

discrete feed-forward filter (in this case) [53]. 

The output symbols are given by 

2322 mod  iiii uuux ,   and 

232112 mod  iiiii uuuux . 

There are in general Lt information bits and T=3 dummy tail bits that encode a 

sequence, i.e., 

]6,...,[]0,0,0,,...,[ 211 
tt LL xxuu . 

 

 

 

 

                    

    Fig.2.6    A typical convolution encoder configuration 

The encoder is started in the all-zero state, ]0,0,0[1  , and the dummy tail bits drive 

it back into the all-zero state [53]. This is called encoder termination. 

The code rate of this convolution encoder is given by: 

                         
TL

L
R

t

t




2

1
 …….……………………….(2.17)   

In practice, tL  >> T and the rate loss due to the termination can be ignored. 

The operation of the encoder can be described algebraically by the D-transform of the 

connector polynomials, i.e. 

 + 

 + 

ui-1 ui-2 ui-3 

x2i-1 

Multiplexer 

x2i 

ui

  



 55 

32)1( 1)( DDDg  ,  

and 

32)2( 1)( DDDDg   

This means that the top output ix2  connects ,, 2ii uu and 3iu , and that the bottom 

output 12 ix connects ,,, 21  iii uuu  and 3iu . Using the D-transform notation: 

...,...],,[ 2

210210  DuDuuuuu  

we can write: 

and                                         
)()()(

)()()(

)2()2(

)1()1(

DgDuDx

DgDuDx




 

as polynomial products, or in matrix form: 

)()()](),()[()( )2()1( DGDuDgDgDuDx T  . 

The code )(Dx can be realized in a systematic feedback format by writing 















32

32
32

2
1

1
,1)1)(()()()(

DD

DDD
DDDuDGDuDx . 

 

 

 

 

 

 

 

                       Fig.2.7 Combined feed-back and feed-forward encoder 
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   Fig.2.8     Recursive systematic turbo code encoder  

We note that )1)(()(' 32 DDDuDu  is simply a scrambled new information 

sequence from which the u(D) can be easily recovered. Division by 

321 DD  describes a feed-back circuit, while the numerator 

321 DDD  describes the new inputs into the circuit. 

 

The )(Dx circuit implementation shown in Fig.2.7 performs the product through a 

division process of two polynomials, i.e., ).(/)( )1()2( DgDg  Generally, the encoder 

(for a rate R=1/2 code) can be written as 











)(

)(
,1)()(

)0(

)1(

Dh

Dh
DuDx  , 

where, )()0( Dh  is the feed-back polynomial and )()1( Dh is the feed-forward 

polynomial.  

2.8.2 Recursive Systematic Convolution Encoders  
With the advent of turbo codes, another implementation of recursive convolution 

encoders has become popular.  

 

We start by defining the division sequence: 

)(

)(
)(

)0( Dh

Du
Dw  . 

For example, let     )()()()()()1)(( 3232 DuDwDDDwDuDDDw  . 

ui 

ui-2 ui-3 

x2i 

x2i-1 

+ + 

+ 

+ 

ui-1 

multiplexor 
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This encoder can be realized as depicted in Fig.2.8 above. The parity check sequence 

of this encoder is given as: 

)(

)(
)()()()()(

)0(

)1(
)1()2()2(

Dh

Dh
DuDhDwDxDp   

and is hence identical to that of the (systematic) feedback encoder. 

2.8.3 Constraint Length 

Constraint length is a measure of the size of the encoder state space, and, in certain 

cases, also of the decoder state space. It measures the delay elements needed in a 

particular encoder implementation. The constraint length of a convolution encoder is 

defined as 



k

i

iij

k

i
j

vDgv
11

)))((deg(max ……………………………….(2.18)      

A minimum basic encoder is one which realizes the code with the minimum number 

of delay elements. By definition a minimal basic encoder is a basic encoder that has 

the smallest constraint length among all equivalent encoders. 

Convolution codes operate on serial data, one or a few bits at a time, while block 

codes operate on relatively large (typically, up to a couple of hundred bytes) message 

blocks. There are a variety of useful convolution and block codes, and a variety of 

algorithms for decoding the received coded information sequences to recover the 

original data.   

In 1967, Andrew Viterbi developed a decoding technique (The Viterbi-Algorithm), 

that has since become the standard for decoding convolution codes. At each bit-

interval, the Viterbi decoding algorithm compares the actual received code bits with 

the code bits that might have been generated for each possible memory-state 

transition. It chooses, based on metrics of similarity, the most likely sequence within 

a specific time frame. The Viterbi decoding algorithm requires less memory than 

sequential decoding because unlikely sequences are dismissed early, leaving a 

relatively small number of candidate sequences that need to be stored. 

 

Convolution encoding with Viterbi decoding is a forward-error-control (FEC) 

technique, that is particularly suited to a channel in which the transmitted signal is 

corrupted mainly by additive white Gaussian noise (AWGN). You can think of AWGN 

as noise whose voltage distribution over time has characteristics that can be 
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described using a Gaussian, or normal, statistical distribution, i.e. a bell curve. This 

voltage distribution has zero mean and a standard deviation that is a function of the 

signal-to-noise ratio (SNR) of the received signal. Let's assume for the moment that 

the received signal level is fixed. Then if the SNR is high, the standard deviation of 

the noise is small, and vice-versa. In digital communications, SNR is usually 

measured in terms of Eb/N0, which stands for energy per bit divided by the one-sided 

noise density.  

Convolution codes are often used to improve the performance of digital radio, mobile 

phones and satellite links. 

As a result of the wide acceptance of convolution codes, there have been many 

advances to extend and improve this basic coding scheme. This advancement resulted 

in two new coding schemes, namely, trellis coded modulation (TCM) and turbo 

codes. TCM adds redundancy by combining coding and modulation into a single 

operation (as the name implies). The unique advantage of TCM is that, there is no 

reduction in data rate or expansion in bandwidth as required by most of the other 

coding schemes. In this thesis, however, our further discussions are more focused on 

linear block codes rather than convolution codes.       

 

A free distance (d) is a minimal Hamming distance between different encoded 

sequences. A code correcting capability (t) of a convolution code is a number of 

errors that can be corrected by the code. It can be calculated as  

 






 


2

1d
t   ……........………..……………………………….(2.19) 

 

Since a Convolution code doesn't use blocks, processing instead a continuous 

bitstream, the value of t applies to a quantity of errors, located relatively near to each 

other. That is, multiple groups of t errors can usually be fixed when they are relatively 

far. 

Free distance can be interpreted as a minimal length of an erroneous "burst" at the 

output of a convolution decoder. The fact that errors appears as "bursts" should be 

accounted for when designing a concatenated code with an inner convolution code. 

The popular solution for this problem is to interleave data before convolution 

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/w/index.php?title=Concatenated_code&action=edit
http://en.wikipedia.org/wiki/Interleaver
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encoding, so that outer block (usually Reed-Solomon) code can correct most of the 

errors. 

2.9 CYCLIC BLOCK CODES 

 

Cyclic codes are a subclass of linear block codes, where all code words in a given 

code are cyclic shifts of one another. Specifically, if the code word c = (c0c1….cn-1) is 

a code word in a given code set, then a cyclic shift by 1 denoted as c
(1)

 and equal to 

c
(1)

 = (cn-1c0…..cn-2) is also a code word [18]. More generally, any cyclic shift c
(i)

 = 

(cn-icn-i+1…..cn-i-1) is also a code word. The cyclic nature of cyclic codes creates a nice 

structure that allows their encoding and decoding functions to be of much lower 

complexity than the matrix multiplications associated with encoding and decoding for 

general linear block codes. Thus, most linear block codes used  in practice are cyclic 

codes. 

 

Cyclic codes are generated via a generator polynomial instead of a generator matrix. 

The generator polynomial g(X) for an (n,k) cyclic code has degree n-k and is of the 

form:  

          ,......)( 110

kn

n XgXggXg 

 ………………………………(2.20) 

                

where gi is binary (0 or 1) and g0 = gn-k = 1. The k-bit information sequence (s0……sk-

1) is also written in polynomial form as the message polynomial: 

                ,......)( 1

110



 k

k XsXssXs ……………………………..(2.21) 

      

The code word associated with a given k-bit information sequence is obtained from 

the polynomial coefficients of the generator polynomial times the message 

polynomial, i.e., the code word c = (c0…..cn-1) is obtained from: 

,......)()()( 1

110



 n

n XcXccXgXsXc …………….…………..(2.22)  

      

A code word described by a polynomial c(X) is a valid code word for a cyclic code 

with generator polynomial g(X) if and only if g(X) divides c(X) with no remainder(no 

remainder polynomial terms), i.e.       

http://en.wikipedia.org/wiki/Reed-Solomon
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            )(
)(

)(
Xq

Xg

Xc
  …………………………………………………………..(2.23) 

    or a polynomial q(X) of degree less than k. 

 

Example: 

Let us consider a (7,4) cyclic code with generator polynomial g(X) = 1 + X
2
 + X

3
.  

Determine if the code words described by polynomials c1(X) = 1 + X
2
 + 2X

3 
+ X

5
 + 

X
6
 and c2(X) = 1 + X

2
 + X

3
 + X

5
 + X

6
  are valid code words for this generator 

polynomial. 

Solution: Division of binary polynomials is similar to division of standard 

polynomials except that under binary addition, subtraction is the same as addition. 

Dividing     c1(X) = 1 + X
2
 +2X

3
 + X

5
 + X

6
 by g(X) = 1 + X

2
 + X

3
, we have  

 
              13 X  

 

123  XX  12 2356  XXXX  
356 XXX    

       123  XX  
       123  XX   

  0 
 

Since g(X) divides c(X) with no remainder, it is a valid code word. In fact, we have  

c1(X) = (1 + X
3
) g(X) = s(X) g(X), so the information bit sequence corresponding to 

c1(X) is s = [1001] corresponding to the coefficients of the message polynomial  

31)( XXs  . 

Dividing, we have: 

6532

2 1)( XXXXXc   

by 

521)( XXXg  , 

gives: 

 

 

 

  

 

3X  

)1( 23  XX  12356  XXXX  
356 XXX   

12 X  
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where, we note that there is a remainder of X
2
 + 1 in the division. Thus, c2(X) is not a 

valid code word for the code corresponding to this generator polynomial. 

2.10 SYSTEMATIC LINEAR CODES 

Systematic linear codes have the first k code word symbols equal to the information 

bits, and the remaining code word symbols equal to the parity bits. A cyclic code can 

be converted into systematic form by first multiplying the message polynomial s(X) 

by X
n-k

, yielding  

      1

1

1

10 ...)( 



  n

k

knknkn XsXsXsXsX …………………………….(2.24) 

     

This shifts the message bits to the k rightmost digits of the code word polynomial. If 

we next divide (2.24) by g(X), we obtain 

      ,
)(

)(
)(

)(

)(

Xg

Xp
Xq

Xg

XsX kn




 …………………………………………(2.25) 

      

where, q(X) is a polynomial of degree at most k-1 and p(X) is a remainder polynomial 

of degree at most n-k-1. Multiplying (2.25) through by g(X) we obtain: 

                  )()()()( XpXgXqXsX kn  ……………………………..(2.26) 

        

Adding p(X) to both sides yields 

                       )()()()( XgXqXsXXp kn   ………………………….(2.27) 

        

(modulo 2 Arithmetic used). 

 

This implies that p(X) + X
n-k

 s(X) is a valid code word since it is divisible by g(X) 

with no remainder. The code word is described by the n coefficients of the code word 

polynomial p(X) + X
n-k

 s(X). Note that we can express p(X) (of degree n-k-1) as: 

              1

110 ...)( 

 kn

kn XpXppXp …………………………….…….(2.28) 

Combining (2.22) and (2.27) (through addition) we get: 

 
1

1

1

10

1

110 ......)()( 







  n

k

knknkn

kn

kn XsXsXsXpXppXsXXp

      …………………………………………………………………….(2.29) 
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Thus, the code word corresponding to this polynomial has the first k bits consisting of 

the message bits [s0 ……sk] and the last n-k bits consisting of the parity bits [p0 … pn-k-1], 

as  required for the systematic form. 

 

We note that the systematic code word polynomial is generated in three steps: first 

multiplying the message polynomial s(X) by X
n-k

 , then dividing X
n-k

s(X) by g(X) to 

get the remainder polynomial p(X) (along with the quotient polynomial q(X), which is 

not used), and finally adding p(X) to X
n-k

s(X) to get (2.28). The polynomial 

multiplications are straightforward to implement, and the polynomial division is 

easily implemented with a feedback shift register. Thus, code word generation for 

systematic cyclic codes has very low cost and low complexity. 

 

2.10.1 Characterization of channel errors for cyclic 

codes 
The code word polynomial which corresponds to a transmitted code word is of the 

form: 

             c(X)=s(X) g(X)………………………………………(2.30)      

       

The received code word can also be written in polynomial form as  

 r(X)  =  c(X)  +  e(X)  =  s(X) g(X)  +  e(X)......................................(2.31)  

     

where e(X) is the error polynomial of degree n-1 with coefficients equal to 1 where 

errors occur. For example, if the transmitted code word is c = [1011001] and the 

received code word is r  =   [1111000] then e(X) = X + X
n-1

.  The syndrome 

polynomial sypol(X) for the received code word is defined as the remainder when 

r(X) is divided by g(X), so sypol(X) has degree n-k-1. But by eq. (2.28), e(X)  =  g(X) 

sypol(X). Therefore, the syndrome polynomial sypol(X) is equivalent to the error 

polynomial e(X) modulo g(X). Moreover, we obtain the syndrome through a division 

circuitry similar to the one used for generating the code. As mentioned before, this 

division circuit is typically implemented using a feedback shift register, resulting in a 

low-cost low-complexity implementation [18]. 

2.11 EXAMPLES OF COMMON LINEAR CODES 
 

Examples of common linear codes include: 
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 Hamming codes 

 Golay Codes 

 Bose-Chadhuri-Hocquenghem (BCH) Codes, and Low density parity check 

(LDPC) codes. 

2.11.1 Hamming Codes 
In 1948 Hamming [53] found the first error control code, now known as the [7,4] 

Hamming code; he was trying to extend the concept of parity checks to correcting 

errors. The [7,4] Hamming code is composed of the binary code words  

x  =  [x1,x2,x3,x4,x5,x6,x7] 

of length 7, fulfilling the following parity check equations: 

4x + 5x  + 6x  + 7x  = 0   mod2 

2x + 3x  + 6x  + 7x  = 0   mod2 

and   

   1x  + 3x  + 5x  + 7x  = 0   mod2 ,    …….………(2.32) 

at the sending end. 

 

This leaves only four free choices among the seven binary symbols, these choices are 

arbitrary and are the information bits. (Note: here addition is binary addition, also 

known as the EXOR (exclusive-OR) function). Let us choose 3x , 5x , 6x , and 7x as 

the information bits.  

 

If x is transmitted and received as y, the code can be able to tolerate the presence of a 

single bit error and still deliver the correct information bits 3x , 5x , 6x , and 7x .  This 

is achieved in the following simple way: let 

y4 + y5 + y6 + y7 =  , 

y2 + y3 + y6 + y7 =  , 

and   

                                                y1 + y3 + y5 + y7 =  ,     ……………………..(2.33) 

at the receiving end. Binary addition applies in all cases. 
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The vector T),,(   gives the location of the error in binary forms, i.e.,  

T)1,0,1( means the fifth symbol is in error [53].  i.e., (1 0 1)2   1.2
2
 + 0.2

1
 + 1.2

0
  

= 4 + 1 = 5. 

 

In 1949 Golay [53] did not only discover two perfect codes, i.e., the [23,12] binary 

(c.f. GF(2)) Golay code and the [11,6] ternary (GF(3)) Golay code, but also extended 

Hamming‟s [7,3] code to the infinite family: 

mmmm  ],3),1(2,12[  > 1 of Hamming codes. 

2.11.2  The Parity Check Equation 
The parity check equations are conveniently expressed in the linear algebraic 

equation                     0Hx ,   …………………………………………...(2.34) 

where, H is the parity check matrix containing a 1 in position (i,j), if xj is checked in 

equation i.  i.e.,   x  =  Txxxxxxx 7654321 .  Each row of H corresponds 

to a parity check equation. 

 

For  the [7,4] Hamming code 

]4,7[H =  ),,,,,,(

1010101

1100110

1111000

7654321 hhhhhhh
















. 

                                                                                  ……………(2.35) 

1    2    3    4   5    6    7     column number 

   error  position 

This algebraic formulation immediately reveals some fundamental principles [53]: 

Namely, that the code is linear, i.e., Hx1 = 0,  Hx2 = 0,     H(x1 + x2)  =  0, and x3 

=(x1 + x2) is also a code word.   We conclude logically, that the family of 

]3),1(2,12[  mmm
. Hamming codes has parity check matrices H, the matrices 

whose columns consist of all 2
m
-1 non-zero vectors of length m.  e.g. if m = 3, we 

have the [7,4,3] - Hamming code   [n,k,d]  -  code, where d is the minimum 

distance or Hamming distance of the code. Hamming codes are single-error 

correcting codes. 
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A single error is identified by hj, where j is the location of the error and all hj are 

unique. Conversely, double errors in positions i and j are not identifiable since hi + hj = 

hk, look like a single error in position k. 

 

Any parity check matrix can be arranged such that  

                            H   =   [A | In-k] .  ………………………………….(2.36) 

Through column and row permutations and linear combinations of rows, where In-k is 

the n-k identity matrix and A has dimension  (n-k) x k. 

Example:     

             H[7,4]  =  
















1001101

0101011

0010111

     ………………………..(2.37)                

                                      A                   I3 

 

From this form we can obtain the systematic k x n code generator matrix 

                    G    =   [Ik   |  (-A
T
 )]  ,  ………………………………….(2.38) 

through simple matrix manipulation. 

 

For the [7,4] – Hamming code 

            G[7,4]  =  





















1101000

1010100

0110010

1110001

…………………………..(2.39) 

 

The code generator matrix has dimensions k x n and is used to generate directly the 

code words x via          

                             x
T    

=  u
T
 G ,  ……………………………………(2.40) 

where u is the information k – tuple. Algebraically, the code word x lies in the row 

space of G. 

 

The Hamming code is an error-detecting and binary error correcting code used in data 

transmission systems that can 

 Detect all single- and double-errors and 
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 Correct all single-bit errors. 

 

Hamming codes are identified by the ordered set (n, k). The Hamming code (7,4) is 

the classic example used which describes a word of 4 data bits long and 3 error parity 

check bits. 

2.11.3 Hamming Bound  
A t-error correcting code with M code words must fulfill the inequality 

 

                  M 
































t

nn
...

1
1    n2   ,         ……………………(2.41) 

where, n is the code length and M is the number of code words. 

Mathematical Proof of the Hamming Bound:   There are 2
n
 possible binary vectors of 

length n. Each of the M code words needs a sphere of distance t around itself which 

cannot contain another code word in order to tolerate t errors and still be uniquely 

identifiable. 

 

Definition: A code, which fulfills the Hamming Bound with equality is called a 

perfect code.  

 

The family of Hamming codes and the two codes discovered by Golay are the only 

existing perfect codes. 

 

A Hamming code satisfies the relation (k + p + 1)    
p2 , with (k + p)= n, where n is 

the total number of bits in a block, k is the number of information bits in the block, 

and p is the number of parity check bits in the block, such that p = (n – k). 

 

A set of Hamming codes exists and is referred to as the „forward error correction 

code set‟; it has the capability of enabling the receiving station to correct a 

transmission error. While it takes more bits to send the information, it means fewer 

retransmissions and thus can actually speed up a noisy or hazardous channel. 

 

The number of parity bits in the Hamming code is given by the Hamming rule. The 

rule is represented by the inequality    k + p + 1     
p2 . The hamming code word is 
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created by multiplying the data bits by a generator matrix using modulo-2 arithmetic. 

The result of this is called a code word vector , which consists of the original data bits 

and the parity bits. 

 

The generator matrix used in constructing the Hamming code consists of two 

components, namely, the identity matrix component I, and the parity check 

generation matrix P.  For a data size of 4 bits the following matrix is created: 

 

Multiplying a 4 – bit vector (d1, d2, d3, d4) by G results in a 7-bit vector of the form 

(d 1, d2, d3, d4, p1, p2, p3). The P component is what generates the parity bits. If the 

selection of the columns of P are unique, it is true that (p1, p2, p3) is the parity 

calculation of three distinct subsets of the original data. 

 

I                   P 

----------------  ---------- 

                             G =  





















0111000

1010100

1100010

1110001

     …………….(2.42) 

2.11.4 Golay Codes  

Binary Golay code refers to two so-called closely related error-correcting codes. One 

is called extended binary Golay code, which is an error-correcting code that encodes 

12 bits of data in a 24-bit word, in such a way that any triple-bit error can be 

corrected and any quadruple-bit error can be detected. The other is called the perfect 

binary Golay Code, which has code words of length 23 and is obtained from the 

extended binary Golay code, by deleting one coordinate position. Conversely, the 

extended binary Golay code can be obtained from the perfect binary Golay Code by 

adding a parity bit. 

There are two essentially distinct versions of the Golay code: a binary version and a 

ternary version. The binary version  23G  is a  (23,12,7) binary linear code consisting 

of  2
12

 = 4096 code words of length 23 and minimum distance 7. The ternary version 

is a  (11,6,5) ternary linear code, consisting of  3
6
 = 729 code words of length 11 with 

minimum distance 5.  

http://mathworld.wolfram.com/Binary.html
http://mathworld.wolfram.com/Ternary.html
http://mathworld.wolfram.com/Binary.html
http://mathworld.wolfram.com/LinearCode.html
http://mathworld.wolfram.com/Codeword.html
http://mathworld.wolfram.com/Ternary.html
http://mathworld.wolfram.com/LinearCode.html
http://mathworld.wolfram.com/Codeword.html
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By adding a parity check bit to each code word in 23G , the extended Golay code  G24, 

which is a nearly perfect  [24,12,8] binary linear code, is obtained.  

 

2.11.5  Bose-Chaudhuri-Hocquenghem (BCH) Codes 

Bose-Chaudhuri-Hocquenghem (BCH) Code is a large family of powerful cyclic 

block forward error correction codes used in the transmission of data. For any 

positive integers m, m > 3, and t < 2
m-1

, there is a binary BCH code with a block 

length n equal to 2
m
 - 1 and n - k < m*t parity check bits, where k is the number of 

information bits. The BCH code has a minimum distance of at least 2t + 1. 

 

2.11.6  Low Density Parity Check (LDPC) Codes 

While LDPC and other error correcting codes cannot guarantee perfect transmission, 

the probability of lost information can be made as small as desired. LDPC was the 

first code to allow data transmission rates close to the theoretical maximum, the 

Shannon Limit. Impractical to implement when developed in 1963, LDPC codes were 

forgotten.  LDPC codes are capacity-approaching codes, which means that practical 

constructions exist that allow the noise threshold to be set very close (or even 

arbitrarily close) to the theoretical maximum (the Shannon limit) for a symmetric 

memory-less channel. The noise threshold defines an upper bound for the channel 

noise, up to which the probability of lost information can be made as small as desired. 

 

The explosive growth in information technology has produced a corresponding 

increase of commercial interest in the development of highly efficient data 

transmission codes as such codes impact everything from signal quality  to battery 

life. LDPC codes are finding increasing use in applications where reliable and highly 

efficient information transfer over bandwidth or return-channel constrained links in 

the presence of data-corrupting noise is desired. Although implementation of LDPC 

codes has lagged that of other codes, notably turbo codes, the absence of 

encumbering software patents has made LDPC attractive to some. 

 

Impractical to implement when first developed by Gallager in 1963,
 
LDPC codes 

were forgotten, but they were rediscovered in 1996. Turbo codes, another class of 

capacity-approaching codes discovered in 1993, became the coding scheme of choice 

http://mathworld.wolfram.com/Parity.html
http://mathworld.wolfram.com/Codeword.html
http://en.wikipedia.org/wiki/Shannon-Hartley_theorem
http://en.wikipedia.org/wiki/Category:Capacity-approaching_codes
http://en.wikipedia.org/wiki/Shannon-Hartley_theorem
http://en.wikipedia.org/wiki/Turbo_code
http://en.wikipedia.org/wiki/Software_patent
http://en.wikipedia.org/wiki/Turbo_code
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in the late 1990s, used for applications such as deep space satellite communications. 

However, in the last few years, the advances in low-density parity-check codes have 

seen them surpass turbo codes in terms of error floor and performance in the higher 

code rate range, leaving turbo codes better suited for the lower code rates. 

2.12  BLOCK CODES AND THE GENERATOR MATRIX 
 

The encoding of k information (message) bits into n physical bits can be described by 

a generator matrix, G, with n rows and k columns, where n > k, and where each 

matrix entry is either 0 or 1. The generator matrix is a compact description of how 

code words are generated from information bits in a linear block code. The design 

goal in linear block codes is to find generator matrices such that their corresponding 

codes are easy to encode and decode yet have powerful error correction/detection 

capabilities. We represent the encoding process as a set of n equations defined by:     

 kjikjijijiij gsgsgsgst  .....131211 ,  ,,.......,1 nj  ……(2.43)  

where, ijg  is binary (0 or 1) and standard binary multiplication is used. 

With reference to channel coding, the transmitted stream t is related to the source 

stream s by the linear relation:                   t     =    G
T
s       ……….(2.44)  

    

where,   G  is called the generator matrix.  

2.12.1 The Replication Process and Code   

Replication is similar to repetition. For example, a repetition code for 1 logical bit, 

replicated 3 times, can be described as follows:                                                                                     

s    =    ( x0 )  ;   Let G   =  (1 1 1)  ; 

then     G 
T
  =  

















1

1

1

 ; 

and                                                                                                                                                

t   =   G
T
 s    =   

















1

1

1

 ( x0 )        =    
















0

0

0

x

x

x

                  

To encode a pair of logical bits into a triple of physical bits, we can use the generator 

matrix: 

http://en.wikipedia.org/wiki/Deep_space
http://en.wikipedia.org/wiki/Satellite_communication
http://en.wikipedia.org/wiki/Error_floor
http://en.wikipedia.org/wiki/Code_rate
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G     =     








111000

000111
  ; 

and                                                                                                                                             

                       G
T        

=      



























10

10

10

01

01

01

;   the source vector s   =  








1

0

x

x
 , so that we get the 

transmitted vector (matrix) as: 

    t         =      G
T
   s         =     



























10

10

10

01

01

01

  








1

0

x

x
         ……………………….….(2.45)

        

or 

t  = G
T
 s   =     



























1

1

1

0

0

0

x

x

x

x

x

x

  ………………..…………………………. (2.46) 

     

Let us look at another example: if   

G =   








111000

111111
, 

with  

s   =   








1

0

x

x
, 

we have 
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         t   =    G
T
   s   =   



























11

11

11

01

01

01

 








1

0

x

x
   =      

































10

10

10

0

0

0

xx

xx

xx

x

x

x

……………(2.47) 

If   x0  =  0,   it implies that     

t   =    



























1

1

1

0

0

0

x

x

x
 , 

which is a replication code; 

 

and if  x0  =  1,, then we have: 

                              t    =   

































1

1

1

1

1

1

1

1

1

x

x

x
,     ……………………….………(2.48) 

which is another variant of a replication code. 

 

The replication or repetition code has the following implications: 

 Encoding the original source data by introducing redundancy may reduce the 

probability of a decision error. E.g., the probability of making a decision error 

using a triple repetition code is given by: 

perror  =  








2

3
p

2
(1 – p)  +  









3

3
p

3  
, 

or    

    perror  =    3p
2  

-  2p
3
 ………………………….(2.49)       
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 Therefore, the probability of a decision error can be made arbitrarily small at the 

expense of lowering the rate of transmission (or code rate R= k/n).  

 

2.12.2 Testing for Errors Using the Orthogonal 

Property of Matrices 
 

The above formulation of the channel encoding process does not tell us how errors 

which occur along the channel can be detected and/or corrected at the destination. 

 

To be able to detect errors, another matrix called a parity check matrix, H, is used. 

The parity check matrix H is related to the generator matrix G, through the 

orthogonal property:  i.e., 

                       H .G    =     0       ………………………………………(2.50)  

      

Matrix G, which encodes a  k – bit message into n physical bits, where n > k, is an n 

x k  matrix, i.e., it has n rows and k columns. Consequently, to make the orthogonal 

relation (2.50) valid, the parity check matrix H must have n columns. We also require 

that it should have (n – k) rows. Thus, the parity check matrix H in (2.50) is an  

(n – k)   by   n matrix. 

 

Matrix Rows Columns Designation 

G n k n x k 

H n-k p=n (n-k) x p 

 

The product A  . B of two matrices is defined whenever the number of columns of the 

first factor is the same as the number of rows in the second. 

 

Thus with reference to the product   H. G   =    0, the number of columns of H must 

be equal to the number of rows of G. 

 

Matrix Rows Columns Designation 

H n-k p=n (n-k) x p  

G n k n x k 
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In this case, the number of columns of H must be equal to number of rows of G for 

the relation (2.50) to be true (valid). The product of H and G is an (n – k) x k matrix. 

 

The parity check matrix H is referred to as the orthogonal complement of matrix G if 

the relation (2.50) above is valid. 

 

Let 

G    =   

















1

1

1

 ;                 H       =    








110

011
 

and 

H  . G    =    








110

011
 

















1

1

1

    =    








0

0
 

Because matrices G and H complement each other, their roles can be reversed. This 

means that you can use G  =  H
T
 as a generator matrix and H  =  G

T
 as a parity check 

matrix. Matrix G and H are said to be dual to each other. 

 

The parity check matrix is used to decode linear block codes with generator matrix G. 

The parity check matrix H corresponding to a generator matrix G = [Ik|P] is defined 

as: 

 
   H  =  [P

T
|In-k]. ……………….…………………………(2.51) 

    

It can easily be shown that GH
T 

 =  0k,n-k, where 0k,n-k denotes an all-zero k x (n-k) 

matrix. Recalling that a given code word Ti in the code is obtained by multiplication 

of the information bit sequence Si by the generator matrix G: Ti  =  Si G, we have: 

 
                Ti H

T
  =  Si G H

T  
=  0n-k ,  .....................................................(2.52)  

       

for any input sequence Ti, where 0n-k denotes the all-zero row vector of length n – k. 

Thus multiplication of any valid code word with the parity check matrix results in an 

all-zero vector. This property is used to determine whether the received vector is a 

valid code word or has been corrupted, based on the notation of syndrome testing.   
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Example: 

Let      

G    =    





























1101

1010

0110

0001

0011

0100

1000

      

and    

H   =  

















1010101

1100110

1111000

 ; 

Matrix Rows Columns Designation 

G 7 4 (7 x 4) 

H 3 7 (3 x 7) 

 

H.G    =   
















1010101

1100110

1111000

 





























1101

1010

0110

0001

0011

0100

1000

 ; 

                      or      H.G   =     
















0000

0000

0000

      =     0    .     H.G    is a 3 x 4 matrix. 

Since all our additions in the above operations are modulo 2, the matrix H is indeed 

perpendicular (orthogonal) to G because H.G  =   0. 

 

2.12.3 Checking for Channel Transmission Errors 

To check if a given block code x has been correctly received at the destination as y, 

we calculate the product H . y, and if  H .y    0, we suspect that an error occurred 

during transmission.  H . y  is called the error syndrome. 
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In general, we can describe the error syndrome finding procedure as follows:  

If G . x  =  y, then if an error occurs, we can represent it by e such that y‟  =  y  +  e . 

The error syndrome then returns: 

           H . y‟     =    H.(y + e)  = H . e  …………….. (2.52)     

(Modulus 2). An important category of linear codes is the so called Hamming Codes. 

 

The parity check matrix H for Hamming codes is a 3 x 7 matrix that is constructed by 

making its columns be the numbers in binary representation from 1 to 2
r
 - 1, where 

r is the number of rows in the parity check matrix.  

 

For example, if r = 3, we have the numbers 1, 2, 3, 4, 5, 6, and 7 and their 

representation in binary form is shown below: 

                                                     Number            Binary Representation 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

Therefore, for r = 3 the parity check matrix for the Hamming Code looks as follows: 

H     =    
















1010101

1100110

1111000

. 

The corresponding generator matrix to H is obtained from the relation G  =  H
T
 and is  

a 7 x 4 matrix:                

G    =     





























1101

1010

0110

0001

0011

0100

1000

 . 
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Because matrices G and H complement each other, their roles can be reversed. This 

means that you can use H
T
 as a generator matrix and G

T
 as a parity check matrix. This 

new encoding is different from the original one given by G and H, but both codes are 

related. We say that they are dual to each other. 

 

Table 2.1  :  Conversion of a message word into a code word for transmission 

Message Word   x                         Code word    y 

0000                                               0000000 

0001 1010001 

0010 1110010 

0011 0100011 

0100 0110100 

0101 1100101 

0110 1000110 

0111 0010111 

1000 1101000 

1001 0111001 

1011 1001011 

1100 1011100 

1101 0001101 

1110 0101110 

1111 1111111 

                                               

The notation that accompanies this duality is as follows: If the pair {G, H} defines 

(information/source) bits into n physical bits (n > k), then the pair {H
T
, G

T
} defines a 

code C


[n, n – k], which encodes n – k logical (information/source) bits into n 

physical bits.  

 

One example of an error-control code is the (7, 4) Hamming block code. (7, 4) means 

that 4 message bits, represented by the vector x, are converted into a 7 – bit code 

word, represented by the vector y, according to Table 2.1 above. This coding process 

can be conveniently represented in matrix form as: 
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                        y‟  =  x G,  (modulo 2) …………………………..(2.54) 

     

where, G is a “generator matrix” given by: 

G   =    





















1000101

0100111

0010110

0001011

   ; 

 

2.12.4 Modelling Effects of a Hazardous Channel 

After the message bits pass through a hazardous (e.g. noisy) channel (medium) that 

introduces unknown errors, we can model the received vector y as follows: 

 
              y   =   y‟  +  e   (modulo-2) ………………………………….(2.55) 

      

In modulo-2 addition we have 0 + 0  =  1 + 1 = 0;  0 + 1  =  1 + 0  =  1. Therefore, we 

imagine the error vector e as a binary vector, where a component of e is 1, when the 

received y vector differs from the originating x vector. 

 

The receiver then needs to decode the data in an attempt to recover the original 

message bits. This produces a “syndrome”, s, which determines what the error vector 

was (if no errors or only a single bit error has occurred). This is again conveniently 

represented in matrix notation, though physical electronics may implement it 

differently: 

 
s    =    y H

T
      (modulo-2)   ………………..………………………..(2.56) 

     

where, H
T
 is the transpose of the “parity-check” matrix, H, given by: 

H      =       
















1110100

0111010

1101001

 ………………………………….(2.57) 

     

 s      =   y H
T
        ;       y   =   y‟ + e  ………………………………….(2.58) 

     

A 3 – bit syndrome uniquely determines what the error pattern was, for single bit 

errors. So, since we know what the error was, we can correct it and decrease the 
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probability of a received bit error for the system. The table below defines the 

syndrome to error pattern relationship. But if the syndrome is perceived as a binary 

number, it can be converted to decimal and used as an index into the following error-

pattern look-up matrix (table). The decimal value of the syndrome now points to the 

row of e that contains the corresponding error pattern. 

                Syndrome                                                 Error Pattern 

000                                                          0000000 

100                                                          1000000 

                    010                                                          0100000  

001                                                          0010000 

110                                                          0001000 

011                                                          0000100 

111                                                          0000010 

                                                                                      

The (7, 4) Hamming code is such that, when there is a single error in y, the row of e 

chosen with the syndrome matches the e used above to model the relationship 

between x and y.    Therefore, given y, the decoding procedure is  

        

y (corrected)  =   y‟ +  e       (modulo-2) 

 

=   x   +   e   +   e            (modulo-2) 

                                        =   x                  …………………………..(2.59)                                     

since   addition modulo-2 of any binary number vector to itself results in a vector of 

zeros. 

2.13 STOCHASTIC DECODING METHODS 
 

The basic wireless communications system is illustrated in fig.2.1. In a digital 

communications system, the encoder is part of the transmitter and the decoder is part of 

the receiver. The encoder adds redundancy to a sequence u of input information 

symbols. The channel is a probabilistic medium governed by conditional probabilities 

ryp( | )rx , of individual output symbols, yr, given the input symbol, xr.  The decoder is 

an algorithm, which reconstructs u from the received word y as the estimate, 
^

u . 
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2.13.1 Optimal Decoding 

A “good” decoder reconstructs u with a small probability of error, 

                 ).(
^

uuPPB  )|()(
^

yuuPuûP
y

  …………….(2.60) 

This is the maximum a posteriori decoding principle which by definition states that: 

A maximum a posteriori (MAP) decoder selects the information word whose code 

word maximizes the a posteriori probability given the channel observation, i.e., 

                         )|)((maxarg yuxPû
u

 ………………………(2.61) 

2.13.2 Maximum Likelihood Decoding 

We can develop the a posteriori probability as follows: 

))(())(|(
)(

))(())(|(
)|)(( uxPuxyP

yP

uxPuxyP
yuxP  ……(2.62) 

The a posteriori probability depends both on the channel probabilities, ))(|( uxyP  

and the code word a priori probabilities, ))(( uxP . If all code words are equally 

likely, the following event prevails: 

 

A maximum likelihood (ML) decoder selects the information word, whose code word 

maximizes the conditional channel probability, given the channel observation, i.e., 

                      
u

uxyPû ))(|(maxarg . …………………..(2.63) 

2.13.3 Minimum Distance Decoding 

One of the simplest channel models is the binary symmetric channel, where both of 

two possible input symbols are converted into the other symbol with an error 

probability . In this case, given that y and x differ in d(x,y) positions 

),(),()1())(|( yxdyxdnuxyP    

                                                           

),(

1
)1(

yxd

n















 …………………..(2.64) 

If 5.0  this equation is maximized by minimizing d(x,y). A minimum distance 

decoder selects the information word, whose code word minimizes the Hamming 

distance d(x,y), i.e., 
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                                             ),(minarg yxdû
u

 .  …………………………(2.65) 

The Hamming distance d(x1, x2) between two code words x1 and x2 is the number of 

symbols where these two code words differ. The minimum Hamming distance (MHD) 

of a code C is defined as 

                            dmin  =   212121
,

,,),,(min
21

xxCxxxxd
xx

 . ……….(2.66) 

2.13.4 Minimum Hamming Weight (MHW) 

The Hamming weight, w(x1) of a code word, x1, is the number of non-zero entries of 

x1.  

The MHW of a code C is: 

        0,),0,(min)(min 111
0,

1min
11

 xCxxdxww
xx

.  ……………..(2.67) 

Furthermore [53], for a linear code C: 

minmin wd  . 

A code with minimum Hamming distance (MHD) mind  can correct 








2

mind
errors 

[53]. 

 

2.13.5   Decoding on General Channels 

 

The maximum likelihood (ML) decoder selects 

 

                                         )|(maxarg
~`

xyPx
x

  

= arg ))|(log(max
1

| ii

n

i

XY
x

xyP


 

 

                                  =  ))]()|([log(maxarg
1

| iii

n

i

XY
x

yfxyP 


  

 

                                                   =  arg )(max
1

xm
n

i

i
x


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The addition of the constants   and )( iyf  have no effect on the selection of 
~

x . The 

term )(xmi  is called the matrix of code word x at time i. 

The AWGN channels are characterized by the equations: 
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and the Gaussian performance metric is given by   mi(x)  =  (yi – xi)
2
 , which is called 

the minimum distance metric. 

 
 

2.14 THE SEARCH FOR GOOD CODES 
 

Let C be a block code (not necessarily linear) over a q-ary alphabet, i.e., C is a subset 

of V(n,q). If C has m code words and of minimum distance d, it is called an (n, m, d) - 

code. 

For a fixed n, the parameters m and d work against one another – the bigger m is, the 

smaller is d and vice-versa. This is unfortunate since for practical reasons, we desire a 

large number of code words with high error-correcting capability (large m and large 

d). The search for good codes always involves some compromise between these 

parameters. 

 

Since V(n, q) has a metric defined on it, it makes sense to talk about spheres centered 

at a vector with a given radius.  

                            Thus,   B(x, r)  =  {y  in V(n, q) | d(x,y)   < =  r}                                                        

                                                                     …………………………….(4.34) 

is the sphere of radius r centered at x. The covering radius of a code C is the smallest 

radius s so that 

 

                          Vn(q)          
Cx

sxB


),(         ………………………………..   (4.35) 

i.e., every vector of the space is contained in some (at least one) sphere of radius s 

centered at a code word.
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A code is said to correct e errors if a decoder using the nearest neighbour decoding 

scheme is capable of correcting any pattern of e or fewer errors, introduced by the 

channel. In this case, the decoder can correct any transmitted code word, which has 

been altered in e or fewer coordinate positions. 

 

Let c be one code word of C and S be the set of all n-tuples over the alphabet of C and 

define 

                      S(c) = {a belongs to S  :  d(a, c)  <= e}    ………………………(4.36) 

S( c ) is called the sphere of radius e about the code word c. It consists of all n-tuples 

within distance e of the code word c, which we think of as being at the centre of the 

sphere. 

 

The packing radius of a code C is the largest radius t so that the spheres of radius t 

centered at the code words are disjoint. Obviously,  t  <  =  s. When t  =  s, we say that 

C is a perfect code. 

 

Definition1: A code is said to correct e errors if using nearest neighbour decoding, it 

is possible to decode correctly any transmitted code word, which has been altered in e 

or fewer coordinate positions by the channel. 

 

Definition2: A code is said to correct k errors if, given any transmitted code word, 

which has been altered, but only in k or fewer coordinate positions, it is possible to 

recognize correctly that “some errors have occurred”. 

 

The minimum distance, d, of a perfect code must be odd. If it were even, there would 

be vectors at an equal distance from two code words and spheres around those code 

words could not be disjoint if they had to contain these vectors. 

 

So, d = 2e  +  1, where e is the number of errors in a given code word and it is easy to 

see that for a perfect code t  =  s  =  e. 
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Furthermore, we can count the number of vectors in a sphere of radius e and obtain 

the  

proposition:   A q – ary (n, m, d) – code is perfect if and only if d  =  2e  +  1 and 

                                M .


e

i 0









i

n
(q  -  1)

t
   =  q

n
         …………………………. (4.37) 

Designing a good code is a fairly involved process. Many factors need to be 

considered. For example, the code should be designed appropriately in practice taking 

into account the expected error rates for the particular channel being used [10]. 

 

For example, if it is known that the probability that the channel will introduce two 

errors into any transmitted code word is extremely small, then it will not be necessary 

to construct a code that will correct all two-bit error patterns. A single-error 

correcting code will likely be good enough. Conversely, if double errors are frequent 

and a single error correcting code is being used, then decoding errors will be frequent. 

This brief discussion raises a number of questions: 

 Given n, M and d, can we determine if an [n, M] – block code with distance d 

exists? 

 Assuming such a code exists, how would one be constructed in practice? 

 How should information k-tuples be associated with code word n–tuples to 

facilitate efficient channel encoding? 

 How should channel decoding be performed? 

 

The issue of channel decoding needs to be considered in greater detail. When some 

word is received and it is not a valid code word, finding the closed code word 

involves computing the distance from the received word to each code word in a set, 

requiring M comparisons. While this might be acceptable for a small M, in practice 

we find that M is usually quite large.  

 

Suppose a code C is used with M = 2
50

 code words, which is quite realistic! If we 

could carry out one million distance computations per second, it would take around 

20 years to make a single correction. Clearly, this is not tolerable and more efficient 

techniques are required. Wishing to retain the nearest neighbour strategy, we seek 

more efficient techniques for its implementation as discussed below. 
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Nearest Neighbour Decoding 

If we have an [n, M] – block code C with distance d, we could adapt a strategy for the 

decoder at the end of the communication channel. When this decoder receives an n-

tuple r, it must make some decision. This decision may be one of the following 

possibilities:  

 no errors have occurred: accept r as a valid code word. 

 Errors have occurred: correct r to some code word c   C . 

 Errors have occurred: no correction is possible. 

 

In general, the decoder will not always make the correct decision; for example, we 

can consider the possibility of an error pattern occurring which changes a transmitted 

code word into another code word. The goal is that the decoder should take a course 

of action which has the greatest probability of being correct. We hereby assume that 

errors are introduced by the channel at random, and that the probability of an error in 

one coordinate is independent of errors in adjacent coordinates. 

 

The decoding strategy normally adapted is called nearest neighbour decoding, which 

is specified as follows: 

If an n-tuple r is received, and there is a unique code word c that belongs to C such 

that d(r, c) is a minimum, then correct r to the c. If no such c exists, report that errors 

have been detected, but no correction is possible. By nearest neighbour decoding, a 

received vector is decoded to the code words “closest” to it, with respect to Hamming 

distance. 

 

Using nearest neighbour decoding, what the decoder actually does is to maximize the 

probability P(r | c) that r is received, given that c is sent, i.e., choosing the nearest 

code word is equivalent to choosing the most likely input message c given the 

received tuple r. This decoding strategy is also referred to as maximum likelihood 

decoding. 

 

Suppose that a code word from a code C   A
n
 (element or subset of A

n
) is 

transmitted and a word r   A
n
 is received: 
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1. if r is a code word, then decode as r. 

2. if r   C, and if there is a unique code word r0 that is nearest to r with respect to 

Hamming distance, then decode as r0. 

3. if r   C, and there are at least 2 code words at the minimum Hamming distance 

from r, then we cannot decode r by this decoding scheme. 

  

Note:  Hamming distance is highly significant for determining how good a code is at 

error correction or detection. 

 

Gilbert-Varshamov Bound 

The Gilbert-Varshamov bound[53] quantifies limits of an error control‟s error 

correcting capability as a function of the code‟s size and rate.    The Gilbert-

Varshamov Bound states that there exists a binary linear code of length n and at most 

r parity check bits and minimum distance at least d, given that 
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The proof for this depends on the fact that mind equals the smallest number of columns 

of H that form a linearly dependent set. We construct the parity check matrix H for 

this code as follows: we find the number I of the total 12 r
 possible vectors of size r 

columns of H, such that no 1d  are linearly dependent.  There are at most 
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distinct linear combinations of 2d  or fewer of these columns. If this number is less 

than the total number of vectors, 12 r
, another linearly independent column can be 

added to H. We can continue until  ni  , which proves the bound. 

 

Singelton Bound:  A similar approach as above is used to prove the Singelton bound. 

If C is an [n, k, d] linear code, then 

knd 1 . 

A code which achieves equality in the Singleton bound is called maximum distance 

separable (MDS). Here kn   is the rank of H and therefore the maximum number of 

linearly independent columns. 
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2.15 ROBUST CODES 
 

The word robust is used here not only to refer to codes that perform well under 

ordinary conditions, but also under unusual conditions that stress the designers' 

assumptions.  Here we address the problem of robust channel coding in which the 

signal information should be preserved in spite of intrinsic noise and fading 

phenomena experienced by the signal. We present a theoretical analysis and provide 

insights into optimal coding strategies. Normally, any robust code implementation 

scheme makes use of an arbitrary cooperative number of coding units to minimize the 

reconstruction error. This is evident in the design of the famous turbo code encoder. 

One common characteristic of robust encoders is that they introduce extra 

redundancy in the code in order to compensate for channel noise and fading 

phenomena. 

2.15.1 Mathematical Formulation of Robust Codes 
[44] 

 
Let C   GF(q

n
) be an (n,M)-code, where M = |C|. 

 
Definition 1: 

The code C is robust with respect to its error-masking probability if and only if the 

probability Q(e) of missing an error e is less than one for all nonzero errors e: 

              Q(e)  =  
||

|},|{|

C

CewCww 
 < 1,  e   0,          

                        ……………………………….(2.14) 

where w,e  GF(q
n
). 

Definition 2: 

The code C is uniformly robust with respect to its error-masking probability iff the 

probability Q(e) is constant independently of the nonzero error e: 

                Q(e)  =  
||

|},|{|

C

CewCww 
 = const.,  e   0 , const <1.                      

                                                                    ………………………….(2.15)   

Definition 3:  

A robust code, where R = max|{w|wC, w+e C}| for all errors, e  0 is called a R-

Robust code and is denoted by CR. 
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A graphic depiction of the definitions of the properties of a robust code is shown in 

Figure 2.5. Let C be the set of all code words of length n, and let 
~

C  be the set of all 

code words of set C shifted by an element e  GF(q
n
), },|{

~~~

CwewwwC  , 

then the code C is robust if for any eGF(q
n
), e 0  the intersection of the two sets C 

and   
~

C  is less than the size of the code: |C| > |C 
~

C |. Additionally, if for any e, the 

size of the intersection is less than or equal to R < |C|, then the code is a R-robust 

code. If  R < |C|  is constant for all shifts of the code, then the code is said to be 

uniformly robust.   

                                     

                                            

                                           Fig. 2.4  Definition of code robustness 

 

The construction of systematic robust error detecting codes is based on the use of  

perfect nonlinear functions [44]. While nonlinearity is a necessary condition for 

robustness, there is a direct relationship between good robust codes and good linear 

codes. For instance, in the design and construction of turbo codes, a combination of 

two linear codes is used to generate a nonlinear turbo code, with very good error 

detection and correction capabilities. 

2.15.2 The Potential of Robust Coding Techniques 

In order to compare different robust coding schemes, we need a parameter which 

expresses the system performance level. It is called the information bit error 

probability Pb, and typically falls into the range  63 1010   bP . 

 

The traditional role for error-control coding has been to make a troublesome channel 

acceptable by lowering the frequency of error events [9]. The error events could be 
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bit errors, message errors, or undetected errors. The traditional role has rather now 

expanded tremendously and today coding can do many other things, including: 

 Reducing the occurrence of undetected errors: This was one of the first uses of 

error-control coding. Today‟s error detection codes are so effective that the 

occurrence of undetected errors is, for all practical purposes, eliminated. 

 Reducing the cost of communications systems: Transmitter power is expensive, 

especially on satellite transponders. Coding can reduce the satellite‟s power needs 

because messages received as close to the thermal noise level can still be 

recovered correctly. 

 Overcoming Jamming: Error-control coding is one of the most effective 

techniques for reducing the effects of the enemy‟s jamming. In the presence of 

pulse jamming, for example, coding can achieve coding gains of over 35 dB. 

 Eliminating Interference:  As the electromagnetic spectrum becomes more 

crowded with man-made signals, error-control coding will mitigate the effects of 

unintentional interference. 

 Uniformly robust codes provide for equal error detection against all errors 

(assuming uniform distribution of data messages) independently of error 

distributions. Application of nonlinearity to linear codes decreases the number of 

undetectable errors and redistributes the error detecting power of the original 

linear code reducing the potential weaknesses. 

 Robust codes offer a significant improvement over linear codes with respect to the 

three criteria listed earlier by decreasing the number of undetectable errors 

without changing the redundancy of the code. 

 

2.15.3 Robust Coding Limitations 

Robust coding schemes are not a solution to all problems! Despite all the new uses of 

error-control coding [9], there are limits to what coding can do.  

On the Gaussian noise channel, for example, Shannon‟s capacity formula sets a lower 

limit on the signal-to-noise ratio that we must achieve to maintain reliable 

communications. Shannon‟s lower limit depends on whether the channel is power-

limited or bandwidth-limited. The deep space channel is an example of a power-

limited channel because bandwidth is an abundant resource compared to transmitter 
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power. Telephone channels, on the other hand, are considered bandwidth-limited 

because the telephone company adheres to a strict 3.1 kHz channel bandwidth. 

 For strictly power-limited (unlimited bandwidth) channels, Shannon‟s lower 

bound on ob NE /  is 0.69, or -1.6 dB [16]. In other words, we must maintain 

ob NE / of at least -1.6 dB to ensure reliable communications, no matter how 

powerful an error-control code we use. 

 For bandwidth-limited channels with Gaussian noise, Shannon‟s capacity formula 

can be written as follows [16] 

rN

E r

o

b 12 
  ,         (2.16)    

where, r is the spectral bit rate in bits/s/Hz. For example, consider a bandwidth-

limited channel operating with un-coded quadrature phase shift keying (a 

common modulation technique with 2 bits/symbol and a maximum spectral bit 

rate of r = 2 bits/s/Hz) and a required BER of 510 . We know that without coding, 

this communications system requires an ob NE / of 9.6 dB [1]. Shannon‟s formula 

above says that to maintain reliable communications at an arbitrarily low BER, 

we must maintain (for r = 2 bits/s/Hz) an ob NE /  of at least 1.5 (1.8 dB). 

Therefore, if we need to lower the required ob NE / by more than 7.8 dB, coding 

can not do it. We must resort to other measures, like increasing transmitter power. 

In practice, the situation is worse because we have no practical code that achieves 

Shannon‟s lower bound. A more realistic coding gain for this example is 3 dB 

rather than 7.8 dB. 

 Another limitation to the performance of error-control codes is the modulation 

technique of the communication system. Coding must go hand-in-hand with the 

choice of modulation technique for the channel. Even the most powerful codes cannot 

overcome the consequences of a poor modulation choice. 

2.16 THE ROLE OF COMPUTATIONAL SCIENCE: 

MODELING AND SIMULATION 

 

Computational science is a novel area of basic and applied research in high-

performance computing, applied mathematics, intelligent systems and information 

technologies. It is a new and cost-effective way of solving problems and the outcome 
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is powerful software tools for students, lecturers, government researchers, and 

industrial scientists. Computational science requires basic understanding of 

fundamental concepts like modeling, analytical solution, numerical solution, 

analytical- and numerical-based modeling, simulation, model validation, code 

verification through canonical tests or comparisons, accreditation, etc. 

An analytical solution is the solution based on a mathematical model (usually in 

differential and/or integral forms) of the physical problem in terms of known, easily 

computable mathematical functions, such as sine, cosine, Bessel, Hankel functions, 

etc.[17]. A numerical solution is a solution based on direct discretization of the 

mathematical representations by using numerical differentiation, integration, etc. A 

semi-analytical solution is in between these two and is the solution based on partially 

derived mathematical forms that are computed numerically. 

A model is defined as a physical or mathematical abstraction of a real world process, 

device, or concept. Simulation is concerned with modeling of real-world problems. 

Simulation in engineering usually refers to the process of representing the dynamical 

behavior of a real system in terms of the behaviour of an idealized, more manageable 

model-system implemented through computation via a simulator. A system simulator 

is a program or a series of programs developed to implement and execute simulations 

with well-defined relations between model objects. These relations are, by definition, 

mathematical relations, numerical or not. 

The advantages and disadvantages of computer simulations are somewhat obvious. 

On the plus side, simulations are cheap (generally- supercomputer time can be 

expensive) and just cost computer time. Simulations can be used to model population 

dynamics without going out in the field to count the animals. For the researcher, 

simulations allow total control over every parameter in the system. On the other hand 

(down side), simulations only model what they are told to model, not necessarily 

reality. The simulation may even work in special cases, but changing any of the 

parameters might cause it to behave unpredictably. The cornerstone of good 

simulation science is constant communication with experimentalists. A healthy 

respect for the limitations of the simulation, and efforts to verify simulated models 

with real data, strengthen both the validity of the simulation, and the understanding of 
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the experimental results. The research conducted here involves the modeling and 

simulation of the transmission channel of a wireless radio communication system. 

2.17  CHAPTER SUMMARY 

 

Error-correcting codes are at the heart of most modern data transmission and storage 

systems. Our current research effort focuses on robust coding for emerging wireless 

data communication systems. The basic idea of coding is to add redundancy to data 

for transmission so that even in the presence of some noise and distortion introduced 

by the transmission channel or storage system, the original data can be recovered 

error-free. A well-designed coding system adds the minimum amount of redundancy 

to achieve the desired level of robustness. 

The purpose of the literature review has been to show the connections between 

information theory, coding theory, and how these theories have been exploited in the 

development of robust coding techniques for reliable data transmission in a hostile 

wireless environment, namely a transmission channel faced with problems of multipath 

fading, interference from other radio signal sources and noise. 

The aim of information theory is to model the wireless channel impairments in a 

quantitative way, mainly by statistical models. The modeling is used to adduce the 

performance limits, and to devise methods for efficient transmission of data over the 

channel – that is, coding algorithms. 

The ultimate goal of the coding is to exploit the communication channel as well as 

possible. Our major goal is to spend as little as possible of the limited physical 

resources at our disposal, including time, bandwidth, transmit power, or disk space - 

on the transmission or storage of information, in order to maximize the number of 

users, systems, or services that are able to share resources [6]. We need at the same 

time, to ensure that the quality of the information retrieved at the receiver end is 

satisfactory. 
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CHAPTER THREE  

WIRELESS CHANNEL MODELS 
 

 

3.1 WIRELESS SIGNAL TRANSMISSION 
 

Within the last ten years, we have witnessed an explosive increase of various 

communication applications operating over the wireless media. It has therefore become 

crucial to investigate the fundamental performance limits on reliable communication 

over wireless channels, in which the phenomenon of fading poses critical challenges as 

well as promising opportunities to communication engineers. Fading is one of the 

major forms of volatility in a wireless environment, taking place in all dimensions, i.e., 

time, frequency, and space. Due to fading transmitted signals can occasionally suffer 

from deep signal-to-noise ratio (SNR) attenuation, severe phase distortion, and inter-

symbol interference, all of which notoriously degrade the quality of communication. 

On the other hand, by intelligently exploiting the inherent diversity of fading processes, 

the chance of successful reception as well as the achievable rate of transmission can 

both be dramatically improved [18]. 

 

The wireless channel presents a fundamental technical challenge to reliable 

communications, constrained by propagation conditions and the Shannon capacity 

equation. Signal transmission over the wireless channel is done by modulating a radio 

frequency carrier with the message waveform. This signal arrives at the destination (the 

receiver) via multiple paths . These multiple path signal components, caused by 

reflection off objects in the transmission environment, can arrive with different delays 

(see Fig.3.1) and from different directions. This results in an overall received signal 

having delay spread and an angular spread [19]. 

 

Another characteristic of wireless signal propagation is that the transmitter or the 

receiver or the reflecting objects in the environment can be moving. This motion 
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results in a Doppler frequency shift [19] in the received signal. This mobility (along 

with the multipath) causes a Doppler (or frequency) spread in the received signal. 

 

Therefore multipath propagation results in several transmission impairments. It 

results in a Doppler spread due to channel time-variation. It also results in a delay 

spread and an angular spread in the received signal.  

 

There are other effects on the received signal that are due to average propagation loss 

arising from the square law spreading, absorption by objects in the environment, etc. 

Long term channel variations (also called shadowing) are caused by signal attenuation 

arising from buildings and natural features (such as mountains, trees, etc.). This also 

occurs when new reflecting objects appear in the propagation environment. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 3.1    Multipath Radio Signal Propagation 

 

Another characteristic of wireless signal transmission is that the frequency spectrum 

is shared between several users. In practice, this is done by separating the users by 

using either time-division multiple access (TDMA), frequency division multiple 
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access(FDMA) or code division multiple access(CDMA). In addition, in a cellular 

structure, different geographical areas re-use the spectrum if they are separated far 

enough apart. 

The result of these schemes is the presence of interference from other users in the 

received signal. Therefore, the major impairments in wireless communication arise 

from mobility (channel time variation), multipath propagation (delay spread and 

angular spread) and co-channel interference due to spectral sharing (transmission 

band overlap). 

3.1.1 Wireless Channel Modeling and Simulation 
In order to explore the limits of transmission in a wireless environment and also to 

develop suitable algorithms, we need to understand the mathematical model of the 

propagation environment. A radio signal propagation model is a set of mathematical 

expressions, diagrams and algorithms used to represent the behaviour of radio waves 

in an indoor or outdoor communication channel. Propagation models are used in the 

design and development of wireless communication networks. The ability to 

accurately predict radio propagation behaviour for wireless personal communication 

systems such as cellular mobile radio is crucial to system design.  

 

Since site measurements are costly, propagation models have been developed as 

suitable, low cost, and convenient system design alternatives. Channel modeling is for 

instance required to predict path loss associated with the design of cellular phone base 

stations, as this tells design engineers how much a transmitter needs to radiate so as to 

service a given region.  

 

A typical network consists of a transmitter, a receiver, and the surrounding 

environment. A model can be used for a certain frequency band to predict with a high 

degree of accuracy the radio signal behaviour of the surrounding atmosphere.  Fig. 

3.1 illustrates the transmitter-receiver chain in a wireless channel.  Let us assume that 

the impulse responses of the transmitter and receiver systems are g(t) and f(t) 

respectively. Let us further assume that the impulse response of the physical channel 

is given by c(t, ). 
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The overall channel response including the transmit and receive filters is given by, 

 

  


ddtgctfth )(),()(),(   ……………. (3.1)   

This is the general form of the time-varying impulse response at time t due to an 

impulse at t- . The physical channel response c(t, ) captures the effects of channel 

time-variation, multipath delay spread and angle spread of the propagation 

environment. 

 

The performance of a communications system (or any other system) depends on 

design parameters whose values can be selected by the system designer and 

environmental parameters over which the designer has no control. The relationship 

between these parameters and performance metrics of interest is usually complex. In 

general, changing any single design parameter tends to impact on all performance 

metrics of interest, and simultaneously, changing multiple design parameters typically 

affects performance metrics in ways that cannot be predicted from knowledge of the 

single parameter effects alone. 

 

The goal of a channel simulation process is to select the design parameters so as to 

achieve specific performance levels (or the best performance possible) subject to 

constraints on system cost (cost can thus be viewed as another performance metric). 

Some of the choices the designer must make are essentially discrete or integer valued, 

i.e., a selection among a small (or at least finite) set of alternatives. 

 

Error performance simulation and prediction is quite essential, because the fading 

and noise phenomena, which greatly influence the performance of the wireless 

communication channel, are pretty complex, and they are also usually accompanied 

by other random environmental parameters. The simulation process does not only 

lead to quick results, but also enables design tradeoffs to be investigated in a cheaper 

way. 

Simulation is increasingly applied in wireless system design problems, due to various 

reasons: 
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 The designer is faced with a huge design space (each design parameter can be 

thought of as one dimensional in a multidimensional space). Exhaustive 

exploration of this space is typically impractical. Thus, the designer must rule out 

many alternatives early in the design process on the basis of experience (his own 

or others‟) in order to consider a smaller, more manageable set of alternatives that 

can be evaluated through simulation. 

 Even without detailed modeling of the physical layer, high-fidelity simulations of 

large networks tend to require large amounts of computation. One cannot scale 

down networks for purposes of performance evaluation because the behaviour of 

networks involving small numbers of nodes may be very different. 

 The external environment in which a system must operate is often highly 

uncertain. Terrain type, presence of interfering equipment, jamming, and other 

external factors can all impact performance, but are difficult to accurately 

characterize and model. In the case of jamming, uncertainty about the threat is a 

major issue. 

 

Although simulation is an essential part of the process by which competing design 

alternatives are compared and inferior ones winnowed out [1], simulations of wireless 

communications links and networks are notoriously unreliable, and the results 

obtained from such simulations should be assessed carefully with caution.  

 

For any type of stochastic system, there are at least four general ways in which 

simulation studies can lead to incorrect design choices: 

 Errors in the underlying mathematical models of the system and its environment, 

in associated data, or in the process by which models are fitted to the available 

data. Errors in modeling include unwarranted approximations and simplifications. 

 Faulty implementation of models in code (e.g., programming errors or use of 

faulty random number generators). 

 Improper inputs, e.g., inputs that violate the range of validity of the underlying 

models, or insufficient exploration of the parameter space. 

 Errors in statistical processing and interpretation of the simulation outputs. 

Examples include: 

 Insufficient sample sizes (numbers of runs and/or run lengths), 

 Failure to account for dependence in simulation outputs, and 
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 Untested assumptions about the behaviour of the model,  

      e.g., that interaction between design parameters can be ignored. 

 

Our focus here is on the specific aspect of the first bullet above (errors in the underlying 

models) – the problem of characterizing the external environment in which a wireless 

system/network must operate. The external environment here is the communications 

channel between a pair of antennas. The channel accounts for propagation effects such 

as ordinary 1/d
2
 free space path loss, rain absorption, multipath fading, diffraction, 

refraction, and scattering, as well as general background noise. In the widest sense, the 

channel may also account for sources of interference when these are treated in 

aggregate. In any case, sources of interference, whether friendly (unintentional) or 

jammers, are part of the external environment. 

 

Wireless channels are difficult and capacity-limited communications media. They 

differ a lot from wired channels, due to their unreliable (random or stochastic) 

behaviour compared to wired channels. In wireless channels, the state of the channel 

may change within a very short time span. This random and drastic behaviour of 

wireless channels turns communication over such channels into a difficult task. With 

wireless channels, many different propagation environments can be identified, such as 

urban, suburban, indoor, underwater or orbital environments, which differ in various 

ways.  

 

In this research, we however, focus our attention on factors which influence the 

performance of terrestrial wireless channels.  We consider analytic models of basic 

propagation effects encountered and show how they translate into the performance of 

different communication systems. For example, this knowledge is crucial in 

facilitating the design and parameterization of simulation models of wireless 

channels. 

3.1.2 The Signal Fading Phenomenon 

Fading is the variation in the signal strength as the signal propagates from the 

transmitter to the receiver, and this is accompanied by varying signal levels at 

different points in the channel. In a mobile radio channel, the transmission path varies 

from a simple line-of-sight to one severely obstructed by buildings, foliage, hills and 
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mountains. The term fading is used to describe the rapid fluctuation of amplitudes, 

phases or multipath delays of a radio signal over a short period of time or travel 

distance, so that the large-scale path loss effects may be ignored. Multipath 

propagation is caused by interference between two or more versions of the 

transmitted signal which arrive at the receiver at slightly different times. These 

waves, called multipath waves, combine at the receiver antenna to give a resultant 

signal which can vary widely in amplitude and phase, depending on the distribution 

of the intensity and relative propagation time of the waves and the bandwidth of the 

transmitted signal. 

 

Due to multipath propagation, multiple paths have varying path length, experience 

varying interactions with objects in the paths and varying path loss. The extent of the 

fading depends on the vegetation types, terrain, weather conditions such as humidity 

and precipitation in the channel, etc. The mechanisms of electromagnetic wave 

propagation include reflection, diffraction, shadowing and scattering. 

3.1.3 Signal Propagation Models 
Propagation models are employed to predict the average received signal strength at a 

given distance from the transmitter, as well as the variability of the signal strength in 

close spatial proximity to a particular location. Fading can be classified as either 

small- scale fading or large-scale fading [19].  

 

Small-scale fading refers to rapid fluctuations of the amplitude of the received signal 

strength over very short travel distances or short periods of time. This fading can be 

modeled using small-scale fading models. The statistical time-varying nature of the 

received signal envelope in small scale fading can be described using either the 

Rayleigh or the Rician fading distribution models. The distribution is Rician when there 

is a dominant stationary (direct) signal component such as a line-of-sight propagation 

path. In this case, random multipath components arrive at different angles and are 

superimposed on the dominant signal component. If a dominant signal component is 

absent, the fading is described using a Rayleigh distribution. Multipath propagation 

creates small-scale fading effects in the wireless channel. The Rayleigh distribution is 

commonly to describe the statistical time varying nature of the received envelope of a 

flat fading signal, or the envelope of an individual multipath component.  
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The three most important factors which contribute to the small-scale fading process 

include: 

 Rapid changes in signal strength over a small travel distance or time interval. 

 Random frequency modulation due to varying phase shifts on different multipath 

signal components. The relative motion between the base station and the mobile 

cellular phone results in the random frequency modulation and if objects in the 

radio channel are in motion, they induce a time-varying Doppler shift on the 

multipath signal components. 

 

Large scale fading refers to variation of the signal strength over large distances, and 

long periods of time between the transmitter and the receiver. This fading can be 

described using large scale propagation models. Large scale propagation models 

predict the mean signal strength for an arbitrary transmitter-receiver distance. They 

characterize signal strength over large transmitter-receiver separation distances and 

are used in estimating the radio coverage area of a transmitter. Examples of large –

scale fading models include: 

 The free-space propagation model 

 The ground reflection ray (2-ray) model 

 The log-distance and log-normal shadowing models [19],[27]. 

 

3.1.4 The Mobile Communications Channel 

Mobile cellular communication channels are modeled as fading dispersive channels. 

Communication over such channels is severely degraded because of the time-and 

frequency-selective nature of such channels. Fading dispersive channels are modeled as 

time-varying filters and are completely characterized by their scattering functions. The 

scattering function ( , )f  measures the average received power as a function of the 

time delay,  , and the Doppler spread f. Widths of the scatter function in time L and in 

frequency B reflect the spread of the channel in time and frequency respectively [24]. 

 

The spread in time is due to the multipath effect that is inherent in the channel while 

the spread in frequency is due to the time variation of the channel characteristics. 

Channels with B=0 are spread only in time and are known as time-flat or frequency-

selective channels, while channels with L = 0 are dispersive only in frequency and are 
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labeled as frequency flat or time-selective [41]. The quantity S = BL measures the 

overall channel spread. Channels with overall spread S < 1 , are called under spread 

channels. Examples of such channels are long distance ionospheric HF propagation 

for which S=0.6. Channels with S 1  are known as overspread channels. Non-

dispersive, but fading, channels are characterized by zero spreads in both time and 

frequency. Such channels are, in essence, the random phase Rayleigh fading channels 

discussed extensively in section 3.3.1. 

3.2 THE WIRELESS CHANNEL MODEL 
 

Assuming ideal antennas, the propagation channel becomes identical to the radio or 

wireless channel. The wireless channel attenuates the received signal by a time 

varying factor, denoted by )(ta . This attenuation may be compensated by the 

modulation channel, since amplifiers are employed here to boast the received signal. 

However, at the modulation channel, random time varying noise )(tn also enters the 

system, adding a distorting element to the signal. If the attenuated signal is largely 

amplified, the noise will also be amplified strongly. Therefore, reliable detection 

methods have to be used as part of the demodulator to extract the transmitted 

information signal from the noisy signal. In addition to the noise which is always 

experienced at this stage of the communications system, there is also a possibility of 

electromagnetic waves from other sources, interfering with the carrier signal. These 

unwanted signals are usually referred to as interference. Interference has a significant 

impact on the performance of the channel, similar to noise. The interfering signal is 

also time variant and is denoted by )(ti . The resulting mathematical model of the 

received signal )(ty , depending on the sent signal )(ts and all influencing factors is 

given in Fig. 3.2; 

                          i.e.,  y(t) = a(t).s(t) + n(t) + i(t)   …………………………….(3.2) 

                                        )(ta                                             )(ti               )(tn                                                                                                               

 

       )(ts  

                                                                                                                                                       

                                                                                                                                    

                    )(ty  

                Fig.3.2   Mathematical model of the wireless channel. 

 

 

+ + x 
Channel  
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The specific propagation effects that must be accounted for in a channel model 

depend on the type of system (including the frequency of operation; symbol rate, 

modulation, coding, and other waveform characteristics; antenna types, and antenna 

heights), the terrain, rates of movement, and other geometric factors (e.g., distances 

between antennas and distances to reflective surfaces). Diffraction, refraction, and 

scattering are often of secondary importance and can be ignored for many 

applications. 

 

Multipath propagation phenomena are, however, an important effect that is often 

disregarded or improperly modeled. It is recognized as the major cause of bit errors at 

especially high data transmission rates. 

For low-data-rate systems, multipath fading can often be represented as flat fading, 

i.e., as a time-varying attenuation that affects the amplitudes but not the shapes of the 

received signal pulses. For higher-data- rate systems, however, multipath phenomena 

cause distortion of pulses and intersymbol interference; these effects can be crucial in 

determining waveform parameters and receiver characteristics, including 

equalization, rake reception, error control coding and interleaving, and the use of 

spread spectrum techniques. 

3.2.1 Mathematical Modeling of the Wireless 

Channel 

The wireless channel influences the received signal by a multiplicative factor, here 

referred to as the attenuation )(ta . However, this attenuation factor is a product of 

several components. Analytically )(ta  represents the overall attenuation of the 

transmitted signal and it is constituted by three different effects: namely path loss, 

shadowing and multipath fading. 

 

Path loss is a deterministic effect depending only on the distance between the 

transmitter and the receiver and in most situations does not change significantly on 

smaller time scales. 

 

Shadowing is not deterministic and causes fluctuations of the received signal strength 

at points with the same distance from the transmitter. Shadowing is sometimes 

referred to as slow fading, while  multipath fading is referred to as fast fading. 
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Multipath fading is also stochastic in nature, and leads to significant attenuation 

changes within smaller time scales such as milliseconds or even greater. The three 

attenuation factors combined result in the actual experienced attenuation of the 

wireless channel. This attenuation is an aggregated function 

                )(ta  = )().().( tatata MFSHPL ,              (3.3) 

where, )(taPL  is the path loss factor, )(taSH is the shadowing attenuation factor, and 

)(taMF is multipath fading factor. Multipath fading may have a time-varying or 

frequency varying attenuation impact on the transmitted signal. 

3.2.2 The Physical Basis of Multipath Fading 

The physical basis of multipath fading is exemplified by the reception of multiple 

copies of the transmitted signal, each having followed a different path. In a typical 

environment, each path has a different path length il . Due to this difference in path 

length, each signal traveling along a path arrives with a different delay, clii / , 

where, c  is the speed of light. Some signal copies traveling along shorter paths will 

arrive quite fast, while other copies traveling along longer paths will arrive later. 

Physically, this is similar to an echo encountered in a canyon. The channel is said to 

have a memory, since it is able to store signal copies for a certain time span. Besides 

this multipath propagation, each signal copy is attenuated differently, since the signal 

paths have to pass different obstacles like windows, building walls of different 

materials, trees of different sizes and so on. 

 

Let us denote the attenuation factor of path i  by ia . Taking all this into account, the 

multipath propagation of a transmitted radio wave results in an interference pattern, 

where at certain points, the wave components interfere constructively, while at other 

points they interfere destructively. 

 

If each element within the propagation environment (transmitter, scatterers, and 

receiver) do not move, the propagated signal will only suffer from the delay spread 

and the varying attenuation. In this case, the interference situation of the channel 

stays constant and therefore the channel is said to be time invariant. 
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In contrast, if any kind of movement is encountered in the propagation environment, 

all or some paths change in time, such that all ia  and i  change in time. As a 

consequence, the wireless channel becomes time variant. Here, along with a constant 

changing delay spread, the receiver also experiences varying signal strength due to its 

movement through the interference pattern, therefore, the received signal fades. 

3.2.3 The Mathematical Model of Multipath Fading  

Let us consider the transmission of a band pass signal at carrier frequency, cf , with 

complex envelope  )(
_

ts . This transmitted band pass signal can be represented by the 

equation   

 

               )(ts  =    )(Re ts










)2exp( tfj c …………………………………(3.4) 

The received band pass signal is given by the equation 

               )(ty





_

)(Re ty )2exp( tfj c




…………………….……………… (3.5) 

We are interested in deriving a mathematical model of the received bandpass signal 

taking into account the effect of multipath propagation. Let us consider first the case 

where we do not encounter motion in the environment. Each path will then be 

associated with a different path length, il , and a different attenuation, ia .  Therefore, 

the received signal )(ty is the superposition of all copies, as given below. 
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Since wavelength,   = 
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                          =    )().exp(.
_

ii

i

i tsja  


 ,    …………………….  (3.8) 

    

where, i  = 
c

lf ic2   =  


 il2  is the phase shift of the carrier frequency caused by 

the different length of each path, and i  =  
c

li  is the signal delay along the i-th path. 

Now, let us consider the effect of motion: denote i , as the angle of arrival of path i  

with respect to the direction of motion of the receiver. 

                                               

 

 

 

 

 

 

 

 

 

  

               Fig. 3.3   Sketch of signal arrival components. 

 

The path length change, as a function of speed, v , and time, t , is given by the 

expression: 

 

                 tvl ii ).cos(.  .  …………………………………………....(3.9)  

 

The complex envelope of the received signal can now be expressed as  
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Further simplification of equation (3.10) is possible if we introduce a Doppler 

frequency  variable, df  = 


v
v

c

f c .   and a Doppler shift iv  =  cos( di f). . With 

these two, we have: 
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                           =  )()..2exp(.
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The influence of the motion of the receiver in combination with the i-th scatterer is 

embedded in the amplitude of the carrier (
_

iA ), in the carrier frequency ( iv ) and in 

the delay ( i ) of the envelope.  

 

In practice, the multipath fading phenomena has a frequency-varying or a time-

varying attenuating impact on the transmitted signal. 

 

3.2.4 Characterization of the Channel in Time and        

Frequency: Doppler Spread and Time Spread 
Although many factors influence the quality of the signal received in a multipath 

propagation environment, motion, frequency offset (Doppler shift) of the carrier and 

time delay of the envelope are the major causers of signal damage.  This is because 

the shifted and delayed wave components often interfere destructively, causing severe 

attenuation. 

 

In practice, wireless transmission of a signal in an environment, which includes some 

motion of objects is described by two variables – the Doppler spread, df , and the 

delay spread,  . Both spreads result from multipath reception of the carrier signal 

(and in the case of the Doppler spread, also from the velocity involved), where each 

path may be characterized by a different Doppler shift (due to a different receive 

angle) and time delay.  While Doppler spread is caused by the motion of objects 

within the environment (which might be the transmitter, the receiver or scatters), the 

delay spread is caused by the topology of the environment itself [21]. 

 

Although the Doppler spread is a phenomenon in the frequency domain (generating a 

Doppler shift – which is a shift in frequency), the overall result is a time selective 

behaviour. For the delay spread, this is exactly the opposite. While the delay spread is 

a phenomenon in time, the resulting impact on the received signal is a frequency 

selective behaviour. 
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Considering a receiver moving through a multipath environment with a fixed speed, 

and assuming all path delays in this environment are negligibly small, such that 

)()(
_

tsts i  , the complex envelope of the received signal will then be given by the 

expression: 

 ).).cos(2exp(.).()(
___

tfjAtsty di

i

i 


 ………..……….….(3.12) 

or,    

           )(
_

ty )().(
__

tgts   ……………………………………………(3.13)   

where, )(
_

tg  is called the complex gain of the channel.  We note that here the input 

)(
_

ts  and the output )(
_

ty , of the channel are related by a simple multiplicative 

operation. 

3.2.5 Free-Space Power Loss 

The attenuation of a signal propagating in free space over a distance of d meters 

between two antennas can be derived from Maxwell‟s equations [21]: 

                      
tP
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or in dB 
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                                                                                    ................................ (3.15) 

 

where, oP  is the received power, tP  is the transmitted power,   is the wavelength of 

the signal, Txg  is the gain of the transmitter antenna and Rxg  is the gain of the 

receiver antenna (both gains being in the direction of the straight line that connects 

the two antennas in space. The received power is inversely proportional to the square 

of the distance d and the square of the signal frequency. 

3.2.6 The Two Ray Model 
Since most wireless communications happen close to the earth‟s surface, the scenario 

of free-space power loss is unrealistic. The two-ray model, also known as plane earth 

[21], is a simple model based on physical-optics theory, which takes the reflection of 

the earth‟s surface into account. It also assumes a line-of-sight (LOS) communication 
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and no other influence on the wave propagation besides the earth‟s surface. It is a 

useful starting point for the study of propagation of radio waves for personal 

communications. 

 

The derivation of the two ray model takes into account only two waves: the direct wave, 

from the transmitter to the receiver, and the reflected wave from the earth‟s surface. This 

scenario is illustrated in Fig.3.4. 

 

From the free-space propagation model, the power of the direct wave at the receiver 

is given by the expression: 

                             1RP    =  RxTxt gg
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The power of the wave component reflected from the earth‟s surface at the receiver is 

calculated using laws of reflection of plane waves [21] and is given by the expression: 

                            2RP    =    RxTxefft gg
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where eff  is the effective electric permittivity of space and the magnetic 

permeability of free space being assumed to be 1 (i.e., no magnetic properties 

present); ),( effR   is the effective reflection factor, which takes on values near -1 at 

the surface. 

                                                                  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4   Diagram illustrating propagation of the signal assuming a two-ray   

    model. 

 

 

The total power received ( 1RP + 2RP ) is then given by  
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by applying the superposition principle to the arriving electric field strengths, where 

 )(2 12 dd   is the phase difference between the two waves, and  1d   and  

2d are distances covered by the direct and reflected wave fronts. Further reduction of 

the expression in equation (3.18) is possible [21] by assuming that the angle of 

incidence of the reflected ray is very near 90 degrees, leading to a simplified version 

(3.19): 
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or                             
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for horizontal polarization. 

 

For values of  smaller than 0.6 radian, sin  /2    /2 and the expression can 

be simplified to the known 4
th

-power-law form: 

                                    RP    =   
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ggP RxTx
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where the dependence on frequency vanishes. 

 

Plots of the received power, RP , can be plotted as a function of the distance between 

the transmitter and the receiver, according to the free-space loss, the two-ray model, 

and the 4
th
-power law. 

 

Parameters used for example are: 
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 Antennas with unit gain: i.e., Txg = Rxg = 1. 

 Antenna heights: Txh = 25m;  Rxh = 1.5m 

 Transmitted power:   0dB  (1mW) 

 Transmission frequency (carrier) :   2.4 GHz. 

 

Simulation results indicate that for the two-ray model there are clearly two different 

areas: near the transmitter (before a breakpoint), where the received power decreases 

according to the square sinus function, with peak value following the square of the 

distance; and after the breakpoint, when the phase difference between direct and 

reflected rays is smaller than 0.6 radian, the second approximation (3.20) becomes 

valid, and the received power decreases with the 4
th
 power of the distance (so that the 

difference between the curves can no longer be seen) [21]. The breakpoint can be 

calculated according to 

ddBreakpo int 6.0| 




6.

2

o

hh RxTx  …………………………………. (3.23) 

 

The theoretical results obtained from the simulation exercise are in agreement with 

measured results in practice [24]. For instance, the 2-ray model fits quite well with 

the actual path loss in line-of-sight (LOS) environments, with few or no reflectors and 

scatters, e.g., on highways. 

 

Assumptions made in connection with the above three models discussed so far: 

 LOS propagation was assumed. 

 No other objects surrounding the path or the transmitter and receiver. 

 There was no relative motion between the transmitter and the receiver. 

 

These assumptions are not valid in many realistic environments like urban, suburban 

and indoor environments, where non-LOS (NLOS) is a common feature and mobility 

could be involved. In a more realistic situation, a multitude of physical phenomena 

influence the propagation of electromagnetic waves and the number of possible 

propagation paths is very high. 
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3.2.7 Empirical and Semi-Empirical Models 
Radio signal propagation models can be categorized as either analytical models or 

empirical models. Analytical models are obtained from analyzing electromagnetic 

(EM) wave propagation phenomena. Examples of analytical models are the free space 

model and the two-ray model. Empirical models are obtained from data measurements. 

They implicitly take into consideration many known and/or unknown effects. They are 

good for the experimented frequency/environment. Composite models are a 

combination of analytical and empirical models. 

 

Ray-tracing models are accurate path models which calculate the ever possible path 

loss (attenuation) suffered in each path, and finally add all the signal components 

which arrive at the receiver.  Path loss models play a significant role in radio systems 

planning. They predict large scale coverage for mobile systems; they are used to 

estimate and predict signal-to-noise ratios (SNR) and are used for link-budget design. 

 

However, these methods not only require exact data about the terrain, the buildings 

and vegetation, but are also very demanding in terms of computing capacity to 

process all the data and therefore extremely time consuming. 

 

Due to these reasons, empirical and semi-empirical models were developed [21] to 

calculate the path loss between a transmitter and a receiver at a certain distance from 

each other in specific environments for different frequencies. 

 

Whereas ray-tracing models were based on extensive measurement campaigns in 

different environments, empirical models are based on a mix of empirical and 

theoretical data. For every new area, calibration measurements are required to 

calculate correction factors for the general models. The models are usually of the 

form: 

                                    
d

K
P

P

t

R 1
.   ……..……………………………(3.24a) 

or , in dB,        

)log(..10)log(.10][ dKdB
P

P

t

R  , ……………………………(3.24b) 
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where, the constants K and  are fitted to measurement results according to the areas 

under consideration. The factor K usually depends on the frequency used, as well as 

height of the base station antenna and the wireless terminal. The distance d is in units 

referenced to some reference distance, and has to be defined along with the path loss 

exponent  .  

 

Note that no difference is made between LOS and NLOS anymore, since the models 

are obtained under both conditions, and the different propagation effects are 

approximately condensed in a single parameter, . Typical values of   for various 

environments are given in the table below. 

Some of the well-known and widely used empirical models are 

 The Okumura-Hata Model, and  

 The Lee Model. 

The Okumura-Hata Model  [21] 

The Okumura-Hata model is the most popular of the empirical models. It is based on 

extensive measurements made by Okumura in Japan and on a formula developed by 

Hata which approximates the measured statistics. It is valid for the following values 

of the parameters: 

 Frequency:                         150      -    1000 MHz 

 Distance:                                1      -        20 km 

 Transmitter height over ground:  30    -      200 m 

 Receiver height over ground:        1    -        10 m 

 

The expression for the path loss is: 

A[dB] = 69.55 + 26.16 log (f[MHz]) – 13.82 log( ][mhTx )  

                                         + (44.9 – 6.55 log ( ][mhTx )).log(d[m] -               

    ……………………………………………(3.25a) 

where,   is a correction factor, which depends on the environment and takes the 

following values:           

      =       [1.1 log ( f[MHz]) – 0.7]. ][mhRx  - [1.56 log (f[MHz] – 0.8] 

for small cities. 

                                   =    8.29 [log(1.54 ][mhRx )]
2
  -  1.1 
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 for urban areas where f   300 MHz; and 

      =    3.2 [log (11.75 ][mhRx )]
2
 – 4.97……………………(3.25b) 

 for urban areas , where f   300 MHz. 

 

Three further categories of environments have corresponding correction factors to the 

corresponding urban formula, namely: 

 

4.5)]28/][.[log(2 2  MHzfurban  ………  

(for suburban areas) 

2])][[log(78.4 MHzfurban  + 18.33 log (f[MHz]) – 35.94 

(.....for almost open Rural Areas) 

                     2     =     
2])][[log(78.4 MHzfurban    +  18.33 log (f[MHz]) – 40.94

                                                   ………………………………..(3.25c) 

(for open rural areas).          

 

Table 3.1:   Typical values of the path loss exponent for various environments 

[27] 

  

                          Environment 

 

             

                              

Outdoor                        Free space 

 

                                Shadowed urban area 

                                    Line-of-sight 

  In buildings                                                         

                                   Obstructed                          

 

           2 

 

    2.7   -   5.0 

 

1.5 -  1.8 

4 - 6 
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The Okumura-Hata model was extended by COST (European Cooperation in the 

Field of Scientific and Technical Research) to the COST231 – Hata model for 

frequencies between 1500 MHz and 2000 MHz: 

A[dB]   =   46.3 + 33.9 log (f[MHz]) – 13.82 log ( ])][mhTx  

+ [44.9 – 6.55 log ( ])][mhTx .log (d[km]) -   +  




0

3
 

for big city centres and other cases respectively, 

 

where,  

  = ]8.0])[log(.56.1[][].7.0])[log(1.1[  MHzfmhMHzf Rx .                                   

                                                 ………………………………………….(3.26) 

The Lee Model   [21, 23] 

This model is quite popular because its parameters can easily be adapted to a new 

environment using measurement results. The model consists of two parts: 

 The point-to-point model which takes the terrain into account; and 

 The area-to-area model, based on the previous one, which reflects the effects of 

constructions. Details of the Lee Model are found in [21, 23]. 

 

Besides the models presented here, there are other models, which have been 

developed in various environments in several countries to better adapt the parameters 

of the general model form to the real propagation environment, since building 

materials, urban planning and vegetation differ from one country to another. 

Shadowing 

The Okumura-Hata and Lee path loss models discussed earlier aim at a deterministic 

calculation of the path loss for determined positions of the transmitter and the receiver. 

This is, however, not the reality in practice. In reality the position of a receiver involves 

also the influence of the objects surrounding it and the transmission path, as well as the 

terrain. Therefore, when measurements are made under several varying conditions, 

statistical variations are observed. For a fixed frequency and distance between a 

transmitter and a receiver, different values of the received signal power are measured. 

 

Thus for a given fixed distance, frequency and transmission power, the received 

signal power is not deterministic, but varies due to the objects in and around the 
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signal path. These stochastic, location dependent variations are deemed to be due to 

shadowing, denoted by )(tSH in equation (3.2). 

 

We note that the effect of shadowing is stationary with time, if no receiver movement 

and environment change are involved. Shadowing approximately accounts for the 

difference between the theoretically derived value for the path loss and the actual 

measured value at a certain point from the transmitter. We further note that, the effect 

of shadowing is an abstraction which reflects the result of a sum of several 

propagation phenomena, which occur when an electromagnetic wave propagates in an 

environment [21]: reflections, (e.g., on buildings and ground), refraction (e.g., 

through walls or windows), scattering (e.g., on buildings, trees or ground) and 

absorption (e.g., on forest or parks). The calculation of the effects of every one of 

these phenomena for each location is not feasible (sometimes even impossible) both 

due to complexity and time limitations. Therefore, shadowing is used to describe the 

aggregated effects of all these phenomena. 

 

The free space model and the two-ray model predict the received power as a 

deterministic function of distance. They both represent the communication range as 

an ideal sphere. In reality, the received power at certain distances is a random variable 

due to multipath propagation effects, which is also known as fading effects.   

 

The shadowing model consists of two parts: The first one is known as the path loss 

model, which predicts the mean received power at a distance d, denoted by )(dPr . It 

depends on a close-in distance do , (referred to in equation (3.20) as the break point) 

and used here as a reference. )(dPr is computed relative to )( or dP ,  from equation 

(3.22) such that  

                                      




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
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)(
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                                                                             ………………………..(3.27) 

 

The path loss is usually measured in dB. So from equation (3.27) we have 



 115 

                                   



















odBor

r

d

d

dP

dP
log10

)(

)(
                                            

                                                                             ………………………..(3.28) 

 

The second part of the shadowing model reflects the variation of the received power 

at a certain distance. It is a log-normal random variable, that is, it is of Gaussian 

distribution if measured in dB. The overall shadowing model is represented by 

                                  
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                                                            …………………………………….(3.29) 

where, XdB is a Gaussian random variable with zero mean and standard deviation dB . 

dB  is called the shadowing deviation, and is also obtained by measurement [27]. 

Equation (3.29) is also known as a log-normal shadowing model. The shadowing 

model extends the ideal circle model to a richer statistical model: nodes can only 

probabilistically communicate when near the edge of the communication range. 

 

From measurements of path loss for a variety of environments and distance [21], the 

variations of the measured signal level relative to the average predicted path loss are 

found in practice to exhibit a normal distribution with 0 mean in dB, which implies a 

log-normal distribution of the received power around the mean value corresponding 

to the path loss. 

 

The shadowing variations of the path loss can, therefore, be calculated from the 

distribution[27]: 
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,       

                                                                      ……………………………(3.30) 

where, SH , is the variability of the signal and all variables are expressed in dB. 

 

The value of the variation due to shadowing is then added to the path loss value to 

obtain the overall attenuation (variation):          
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log10][ dBa  ][][ dBadBa
P

P
SHPL

t

R    …………………………..(3.31) 

3.3 WIRELESS MOBILE CHANNEL DESIGN 

 CONSIDERATIONS 

 

The design of wireless communication networks requires accurate prediction of 

electromagnetic signal propagation in the targeted areas of operation. This is essential 

for optimal cell sizes, mobility planning, proper coverage in each of the cells and 

ensuring of reliable links between transmitters and mobile handsets, even for low 

power handset operation [25]. 

 

Many models for providing radio wave propagation characteristics are available and 

are used for radio coverage planning. However, these models are just approximations 

to the real situations and are not equally accurate in different locations or situations. 

Many of the available models are purely statistical and are represented by expressions 

that in effect are probability distribution functions of radio signal attenuation, in space 

and/or time. 

 

In theory, if a model exactly represents the propagation factors at a given location, 

then it is possible to attain zero standard deviation, i.e., 0 , for the variables 

involved. However, since by definition, models are approximations, all such models 

deviate from reality with deviations that reduce with the accuracy of the techniques 

used. 

 

Although propagation behaviour depends on many factors, there are three major factors 

that are critical which influence the propagation characteristics of signals from static 

transmitters and receivers communicating using antenna systems that have clear heights 

advantage. The three are large scale path loss, shadowing, and multipath fading. 

However, for mobile terminals, other factors come into play, so that analysis based on the 

assumption of the prevalence of only the above three factors is no longer accurate. 

 

The standard deviation obtained from practical measurements of the instantaneous 

signal attenuation depends on the resolution used for approximating the area-mean 
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power. Multipath fading involves interference of many scattered signals arriving at an 

antenna. It is responsible for the most rapid and violent changes of signal strength as 

well as its phase. Multipath fading phenomena is regarded as the most dominant 

propagation parameter. However, owing to technology limitations, system margin can 

no longer be considered as the sole mean of compensating for propagation 

disturbances at any instant in time. From a practical point of view, margins are 

designed in order to ensure minimum outage duration of the service for a given 

availability [26]. 

3.3.1 The Rayleigh Fading Model [20] 
Considering propagation in a mobile environment, the receiving antenna is assumed 

to receive a number of reflected and scattered waves, and because of the varying path 

lengths, the phases of the different components are random, and consequently the 

instantaneous received power is also a random variable. 

 

Assuming an unmodulated carrier, the transmitted signal frequency, c , reaches the 

receiver via a number of paths, the i
th

 path having an amplitude ia , and a phase i . If 

we further assume that there is no direct path or line-of-sight (LOS) component, the 

received signal s(t) can be expressed as 

                           )cos()(
1

ic

N

i

i tats  


,                                              

                                                                       ………………………….(3.32) 

where, N is the number of paths. The phase i  depends on the varying path length, 

phasing by 2 , when the path length changes by a wavelength. Therefore, the phases are 

uniformly distributed over [0, 2 ]. 

 

When there is relative motion between the transmitter and the receiver, equation 

(3.32) can be modified to include the effects of motion-induced frequency and phase 

shifts. 

 

Let the i
th

 reflected wave with amplitude ia  and phase i  arrive at the receiver from 

an angle i  relative to the direction of motion of the antenna. The Doppler shift of 

this wave is given by  
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                            di  =  
i

c

c

v



cos     …………………………………(3.33) 

   

where, v is the velocity of the mobile system, c  is the speed of light (3 x 10
8
 ms

-1
), 

and the si '  are uniformly distributed over [0, 2 ]. The received signal, )(ts , can 

now be written as 

                  )cos()(
1

idic

N

i

i ttats  


 ……………………………….. (3.34) 

Expressing the signal in terms of in-phase and quadrature components, from (3.31) 

we have 

                  ttQttIts cc  sin)(cos)()(    ……………………………….(3.35) 

where, in-phase and quadrature components are respectively given as 
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and            

                      )sin()(
1
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N

i
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   ………………………………….(3.37)     

             

The envelope, R , is given by 

                                22 )]([)]([ tQtIR    ………………………………. (3.38) 

 

When N is large in-phase and quadrature components are Gaussian [22]. The 

probability density function (pdf) of the received signal envelope, p(r), has a Rayleigh 

distribution given by the expression: 

                  0,
2

exp)(
2

2

2










 r
rr

rp

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The multipath faded signal is simulated using MATLAB to understand the 

relationship between the number of paths (N) and the statistics of the received signal. 

3.3.2 The Rician Fading Model 

The Rician model is characterized by the presence of a direct path (line-of-sight  - 

LOS) signal in addition to the multiple components. In the presence of both a line-of-
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sight component and the multipath components, the received signal can be expressed 

as 

    )cos()cos()(
1
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ttkttats dcdidic
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) ………………….(3.40) 

where the constant dk is the strength of the direct component, d  is the Doppler shift 

along the LOS path, and di  are the Doppler shifts along the indirect paths as given 

by equation (3.33) above. The envelope in this case has a Rician distribution density 

function given by 
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where oI  )x  is the zeroth order of the modified Bessel function of the first kind. The 

cumulative distribution of the Rician random variable is given by 
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where, ),( rQ  is the Marcum‟s Q function. 

 

The Rician distribution is often described in terms of the Rician factor K, defined as 

the ratio between the deterministic signal power (from the direct path) and the diffuse 

signal power (from the indirect paths). K is usually expressed in decibels as 
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If in equation (3.41) dk  goes to zero ( 22/ dk   <<  22 2/ r ) the direct path is 

eliminated and the envelope becomes Rayleigh fading model. 

 

To simulate the presence of a direct component, the received signal is modeled using 

equation (3.40). The RF signal and the envelope corresponding to N = 10 can then be 

plotted using MATLAB. 

3.4 NOISE AND INTERFERENCE MODELS 

 

One of our major goals is to develop a solid understanding of the characteristics of 

mobile communication channels as well as models used to represent such channels 
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for simulation purposes. The major wireless channel impairments are path loss, 

multipath propagation, and noise and interference. 

 

While the wireless channel propagation phenomena result in an overall attenuating 

impact on the signal from the transmitter to the receiver, the channel noise and 

interference have an additive impact on that signal and this results into distortion of the 

signal. The most famous and important equation in communications systems design 

and research is that, due to Claude Shannon: 

C   =   









N

S
B 1log. 2     bits/second     ….…………………………………..(3.44) 

This is often also referred to as the Shannon-Hartley equation and states that the 

capacity of error-free communications is limited and is both proportional to the 

bandwidth that the signal occupies and to the ratio of the received signal power to the 

received noise power. The signal-to-noise ratio term simply expresses the need to 

reduce natural and random noise relative to the man made communications signal. This 

can be done through various ways, including among others, increasing the transmitter 

power, using adaptive modulation and coding systems, and by improving the antenna 

system. 

 

If the required information transfer rate is less than the capacity as defined by the 

Shannon-Hartley equation, then error free communication is possible. If information 

transfer at a rate greater than this limit is attempted, errors in transmission will occur 

no matter how well the equipment is designed. The Shannon-Hartley equation is a 

very good first step in evaluating the feasibility of any digital communications system 

design. It provides an upper bound, only achievable with infinite signal processing 

resources. The development of strategies to reach the Shannon limit and to overcome 

these issues is a very important theme of wireless communications research today. 

Such strategies include the development of new modulation and coding schemes.  
  

3.4.1 Noise 

We generally define noise as any unwanted electrical signals which negatively affect 

the quality of a desired signal. But we can also classify noise in different categories 

such as man-made noise, thermal noise, impulse noise, and interference from other 
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radio frequency sources. Noise and interference are generally stochastic in nature and 

both vary with time. 

Fig. 3.5 shows an N-path mobile channel attenuation and noise model with path gain, 

path delay and overall additive white Gaussian noise. 

 

Noise is always present in the modulation channel and comes from several sources, 

e.g., atmospheric disturbances, electronic circuitry, human-made machinery, etc. 

Atmospheric noise and noise from electronic devices is generally referred to as 

thermal noise, because it is due to movement of charged particles inside electronic 

components, which exist in every receiver system and is therefore unavoidable.  This 

kind of noise is called white because it contains all frequencies of light.  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

   

  Fig. 3.5     N-path mobile channel attenuation and noise model  

 

 

Thermal noise sources have a power spectral density which depends on the working 

temperature.  The effective noise temperature and noise equivalent bandwidth can 

be found in the relevant datasheets of electronic components. However, in mobile 

communications, these values are usually not relevant since the limitations to system 

performance are mainly due to interference and man-made noise. 
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Man-made noise is that produced by machines operated by humans. It is noise 

because it is energy radiated by machines which are not supposed to generate that 

energy. Their main purpose is some other function, but due to turning on and off of 

electrical and electronic components or to wiring, they radiate electromagnetic energy 

[22], which can disturb wireless communication nearby. 

 

The characterization of man-made noise is very complicated, since many parameters 

have to be measured and they are always specific to the measurement environment. 

The parameters to be measured include average total power, power spectrum, 

probability distribution of the noise voltage, the pulse heights, widths and rates, as 

well as system specific parameters like dependence on antenna polarization, height 

and directivity, and long-time dependence on time and location. 

 

Assuming that BPSK signals are transmitted and that the channel is frequency non-

selective , under these conditions the channel will result in a multiplicative distortion 

of the transmitted signal ( )s t . Furthermore, if we assume that channel fading is slow, 

the resulting multiplicative process can be regarded as a constant during at least a one 

bit signaling interval. If the transmitted signal is ( )s t , the received equivalent low-

pass signal is:                      

       ( ) . ( ) ( )jy t a e s t n t    ( ) . ( ) ( )jy t a e s t n t  …………………… (3.45) 

     

where )(tn represents the complex AWGN process that corrupts the signal with mean 

zero and variance .2/2

on N  The channel gain a  is described by a probability 

density function with Rayleigh distribution. It is normalized to have a mean-square 

value of E(a
2
) = 1, indicating that the expected received average signal energy will be 

cE , which is the coded bit energy. 

 

3.4.2 Interference 

Interference can be due to other systems operating in the same frequency band as 

your receiver, in case of unlicensed bands, or co- and adjacent-channel interference in 

licensed bands. Co-channel interference happens due to frequency re-utilization in a 

cellular environment and is unavoidable.  Co-channel interference occurs if two 
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transmission devices operating within the same radio frequency band are active and a 

receiver, originally trying to receive a signal from one transmitter also receives a 

(weak) signal from the second transmitter. In cellular systems, co-channel 

interference is an important factor which limits the systems performance, and is more 

important than noise. One important fact to note about co-channel interference in a 

cellular environment is that, increasing the transmission power at each base station 

(so at each transmitter) provides no system improvement regarding the interference 

power level [21]. In unlicensed bands, co-channel interference is also an important 

issue to take into consideration. Here, the same assumption may be made as with a 

cellular system: if multiple interference sources exist, the interference can be modeled 

as white Gaussian noise, which makes the consideration of interference much easier. 

The interference power level can be incorporated in the path loss equations then. 

Adjacent-channel interference is due to realistic filters letting some power to be 

transmitted in the sidebands. Adjacent channel interference is encountered in cellular 

systems as well as in unlicensed bands. 

 

Interference is always the result of other wireless systems operating in the same or 

operating in nearby frequencies.  The quality of demodulation and decoding of a 

signal depends on the difference between the power of the received signal and the 

power of other signals with power in the same frequency band – interference – added 

to the power of the noise.   

 

In general, interference is usually due to a source of noise which primarily does not 

intend to produce electromagnetic disturbance patterns, for example, microwave 

ovens or other electrical or electronic equipment. Besides these sources of signal 

distortion, there are other communications systems which might be active in the 

environment. Such sources, which have the primary goal to produce electromagnetic 

radiation for communication purposes are not regarded as noise but are instead 

referred to simply as interference. 

 

Like noise, interference has an additive distorting impact on the signal. For example, 

interference occurs in cellular systems, due to the fact that bandwidth is limited and 

system operators have to reuse certain spectra of the overall frequency bandwidth. 
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Frequency planning is one method to control interference in cellular systems. 

However, in unlicensed bands, interference may stem from local wireless networks, 

which just happen to be deployed quite close to each other.   

3.5 WIRELESS CHANNEL PERFORMANCE METRICS 

A couple of performance metrics are commonly used in assessing a wireless system 

performance. These include [20] symbol error rates, (SER), and/or bit error rates, 

(BER), or probability. Both performance metrics relate to the digital channel: the 

BER relates to the interpreted bit stream, while the SER relates to the stream of 

symbols, not being interpreted yet. Both metrics depend on the instantaneous power 

ratio between the received signal power, )(2 ty , and the noise and interference power, 

)(2 tn  and )(2 ti . This instantaneous power ratio is given by the Signal-to-Noise-and-

Interference Ratio (SNIR). Note that the attenuating influence of the wireless 

channel is already included in the received signal power, )(2 ty . If the average SNIR 

of a given link is available, the average error rates like symbol rate (SER) or bit error 

rate (BER) can also be obtained. In general, the relationship between SNIR and error 

rates or error probabilities is not linear; it is instead highly complex and depends on a 

lot of details. Therefore, an exhaustive understanding of the influence of all effects on 

the receiver SNIR is necessary when carrying out investigations in the performance of 

any wireless communications systems. 

 

For any channel where data is transmitted without retransmissions, error rates are 

critically important. Error rates are typically low for wired connections, but vary 

enormously for wireless links. Depending on the formatting and content of the data, 

the relevant measure of performance for a wireless communications system would be: 

 End-to-end bit error rate (BER) 

 Symbol error rate 

 Message error rate, or 

 Line error rate (for video). 

 

These are some of the high-level performance measures used as criteria for 

comparing mobile wireless systems. 
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Complex digital communications systems are easier to design if “what-if” simulations 

are used early in the design process. The speed of getting results can be greatly 

accelerated by focusing the simulation. In designing a simulation, it is important to 

focus the model on the design task it supports – usually, one component or subsystem 

of the overall system. A focused, structured simulation accelerates achievement of 

results (be it improvements or otherwise) without sacrificing accuracy. 

 

From the mathematical model of Fig. 3.2 we have: 

                              )()()().()( titntstaty   ………………………………..(3.46) 

where )(ta  is the overall attenuation experienced by the transmitted signal, )(ts ; 

)(tn is the random noise and )(ti  represents the channel interference signals. 

 

A commonly used measure of the performance of a given channel is the Signal-to-

Noise-and Interference Ratio (SNIR), usually measured in dB. 
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With reference to a digital communication system, we note that a sequence of analog 

pulses has to be converted back into a digital bit sequence which originated it. This 

process is generally referred to as demodulation. However, demodulation can be 

separated into two phases: the demodulation itself, and the detection stage. 

 

The digitally modulated signal can be seen as a linear combination of functions which 

form an orthonormal base of a vector space (the inner product space). The function of 

the demodulator during each symbol period is to decompose the received waveform 

into a vector in that space. This vector contains the value of the projections of the 

received waveform as functions in the orthonormal base of the vector space. This can 

be achieved either by a matched filter or a correlator, depending on the type of signal 

being demodulated. The detector‟s function is to compare the vector output from the 

demodulator with values of the M possible waveforms. The distances in the vector 

space are compared, and the “closest” possible waveform is accepted as the 

transmitted sequence. The detection is made possible such that the probability of 

making a wrong decision is minimized. 
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3.5.1 Bit Error Probability   
Error-control coding is one of the most complex functions to simulate in a digital 

communications system. It is even more of a challenge to simulate error-control 

coding as part of a system that uses a particular modulation technique over a specified 

channel. Success lies in the ability to determine how much effect the rest of the 

system has on the error-control component and, therefore, how best to model the rest 

of the system. 

 

This is because many variable parameters are involved, and you have to account for 

the performance of several components: the modulator-channel-demodulator chain - 

although you may not necessarily have to include the physical models for the 

modulator, channel, and demodulator in your simulations. We are restricting 

ourselves to the digital signal performance simulation and evaluation with reference 

to fading and noise phenomena only. For instance, one can remove the modulation 

and demodulation stages and insert errors directly in the data stream to the decoder. 

We then derive the statistical characteristics of these errors from the modulation 

scheme. In effect, we replace the modulator-channel demodulator chain with an 

equivalent channel. 

3.5.2 Wireless Channel Design Tradeoffs 
Performance optimization usually involves a judicious trade-off to be made between 

the power, the bandwidth and the complexity of the signal processing required, 

maintaining the transmission errors of the source data below some given data. The 

most suitable channel coding and modulation techniques for a given application must, 

as a rule, take into account the characteristics of the channel through which the 

transmission occurs. 

 

Consider an ideal band-limited channel of bandwidth W Hertz in which the signal is 

corrupted only by additive white Gaussian noise (AWGN) having a one-sided power 

spectral density level of No watt/Hertz. (This is a simple model and does not apply to 

channels that corrupt signals in more complex ways, e.g., by multipath or mutual 

interference.) Let Eb denote the energy per information bit at the receiver and let C 

denote the channel capacity, i.e., the maximum average rate at which information can 

be transferred over this channel. The following formula, derived from Claude 
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Shannon‟s capacity formula, relates the maximum achievable spectral efficiency C/W 

to the signal-to-noise ratio (SNR)   Eb/No: 
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A graph of spectral efficiency C/W as a function of the signal-to-noise ratio (SNR) 

Eb/No  shows that there is a tradeoff between power efficiency and spectral efficiency. 

It also reveals that waveforms that achieve very high spectral efficiency (e.g., high- 

order quadrature-amplitude modulation) require high SNR, while the most power-

efficient waveforms (e.g., orthogonal frequency-shift keying), are wasteful of 

spectrum.  

 

The above equation also reveals that in order to achieve a spectral efficiency C/W of 

6 bps/Hertz, the minimum required signal-to-noise ratio Eb/No = 10.5   or 10.2 dB. 

Note that although this value of SNR is a practical operating point for many wireless 

systems, most existing wireless systems that operate at SNRs in this neighbourhood 

actually achieve spectral efficiencies less than 1.0, and many military wireless 

systems and satellite systems have spectral efficiencies less than 0.1. Thus, there is 

clearly substantial room for improvement. 

 

The simplest way to achieve higher spectral efficiency is by increasing Eb/No, which 

in turn implies increasing the transmitted signal EIRP in the direction of the receiver 

(recall that EIRP is the product of transmitted power and antenna gain), increasing the 

receiving antenna gain, decreasing the receiving system noise figure, or some 

combination of these measures. The price of simultaneous power and spectral 

efficiency is a substantial increase in complexity. Nevertheless, combined 

modulation/coding techniques that achieve fairly high power and spectral efficiency 

simultaneously have been developed in recent years, and commercial ASICs that 

implement some of these techniques are now available. 

 

3.5.3 Capacity and Spectral Efficiency Issues 

The information theoretic definition of capacity of a given channel is the maximum 

information rate, also equals the maximum error-free user data rate that could be 

achieved with ideal forward error control (FEC) coding. The term “capacity” is very 
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often  incorrectly used as a substitute for “maximum user data rate”. There is an 

increasing number of users who desire access, as well as a demand for more 

bandwidth (higher data rates) per user. Higher capacities can be achieved by a 

combination of: 

 More efficient use of the frequency spectrum and 

 Greater exploitation of frequencies at X-band (8 – 12 GHz) and above. Since even 

at the higher frequencies spectrum is limited, more efficient spectral utilization 

will be a high priority for all wireless channel users. 

 

A deceptively simple question in mobile communications networking is this: ”How 

does one assess the „capacity‟ (maximum   throughput) of a given channel?” There 

are a number if different ways of doing this, and the results can vary significantly, 

depending on: 

 Whether one considers per-user throughput or total channel throughput. Total 

channel throughput is (at most) the sum of all user transmit data rates at a given 

time. 

 The maximum tolerable bit error rate (BER) or message error rate (MER). For 

systems in which users or channels generate mutual interference, the maximum 

number of simultaneous transmissions increases with the maximum error rate that 

one is willing to accept. Thus, total channel throughput also depends on the 

maximum error rate. 

3.6 LIMITATIONS OF CHANNEL MODELS 

 

There are at least four major problems associated with the channel models used in 

wireless communications system simulations: 

 There is a lack of standard reference channel models that can be used for making 

fair comparisons between competing system concepts. Contractors and other 

proponents of systems are free to choose the external environment models against 

which their systems will be evaluated. There is a strong disincentive to choose an 

external environment model that is more stressing than a proposed system can 

tolerate. 

 Most wireless communications simulations lack adequate representations for 

multipath fading and distortion, and for jamming other than broadband noise 
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jamming. These effects can often be much more important for overall system 

performance than background noise. 

 Channel models are often inextricably interwoven with the system model, i.e., 

elements of the system (modulation, demodulation, and other analog signal 

processing) are lumped together with the channel to form a single “discrete” channel 

model, a black box, whose inputs and outputs are symbols (bits or groups of bits). 

The primary disadvantage of such models is that one cannot separate the system from 

the channel in order to compare different systems against the same channel. 

 

Even when there is a clear separation between the communications system and the 

channel in the model, the coding of the interface between the two may not be clean and, 

in any case, varies from one simulation to the next. This prevents one from easily 

removing the channel part of a simulation in order to substitute a different channel (or 

removing the system part in order to substitute a different system). The goal of being 

able to make fair comparisons of competing systems using existing simulations (for the 

future) without extensive recoding, will not be realized until all the four above 

problems have been addressed. 

3.7 CHAPTER SUMMARY 
 

In this chapter, analytical and empirical models for radio wave propagation were 

discussed, and the behaviour of the wireless channel as it is observed in reality, was 

explained. We note that, for many applications, the wireless channel is still the first 

choice of transmission medium, due to lack of alternatives. The behaviour of the 

wireless channel may be divided into two parts: attenuating factors and additive 

factors. Both contribute to the stochastic behaviour of channel. The attenuation 

factors, residing in the radio channel, can be analytically decomposed into three 

components. One of them (path loss) is deterministic and depends solely on the 

distance between the transmitter and the receiver. The other two (shadowing and 

multipath fading) are stochastic, but might be modeled according to their primary and 

secondary statistics. They depend on the propagation environment as well as on the 

time scale and sampling rate with which the wireless channel is observed. 
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The additive factors, residing in the transmission channel, may be modeled by two 

components, which are both stochastic. The first one, noise, is an omnipresent effect 

and can not be excluded from any system analysis. It is not a characteristic for 

wireless channels, but is a limiting factor in any communications system. The second 

source, interference, depends again on the considered scenario. Since interference is 

caused by devices transmitting radio frequency signals, it is important to clarify first, 

if these signals are transmitted within the same frequency bands or not and further, 

how far such disturbing sources are away from the actual receiver considered. There 

exist multiple scenarios, where interference has no significant impact. 

The analysis in this chapter provides a framework in order to classify different, 

considered transmission scenarios and determining in advance, which effects might 

be of interest for a specific scenario and which one is not. Thus, it forms a 

fundamental block for simulating a certain scenario. We have considered several 

models, but we restrict our simulation in chapter five to the following models: 

 The free-space power model 

 The Okumura-Hata model 

 A new HF/MF Ground-wave Model for Urban Areas in Uganda 

 The Rayleigh fading model, the Rician fading model, and 

 The noise and interference models. 

However, turning these analytical models into running simulations requires a further 

step -- algorithm development and programming. This is treated in chapter five, 

which guides the reader to implementable simulation models of wireless channels. 

 

Using propagation models, we can provide installation guidelines, mitigate 

interference, and design better wireless systems. 
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CHAPTER FOUR            

THE TURBO CODE CONCEPT  

 

4.1 INTRODUCTION TO TURBO CODES 

 

All radio communications systems users want the impossible: worldwide, error-free 

communications. Shannon‟s theorem gives us some insights into why this is difficult 

or impossible to achieve but propagation and information theory specialists have been 

striving to push the physical laws to the limit. The last fifteen years has witnessed a 

revolution in error control coding, sparked off by the invention of turbo coding. 

 

Turbo codes are a class of powerful error correction codes that were introduced in 1993 

by a group of researchers in France, along with a practical decoding algorithm [12]. 

Powerful error correcting codes like turbo codes are indispensable because they offer 

the reliable data and multimedia service required currently, and in the next generation 

mobile communication systems.  The importance of turbo codes is that they enable 

reliable communications, with power efficiencies close to 0.5dB of the theoretical 

capacity limit predicted by Shannon. Since their introduction, turbo codes have been 

proposed for low-power applications, such as deep-space, and satellite 

communications, as well as for interference prone applications, such as third generation 

cellular phone and personal communication services.  The major objective here is to 

achieve maximal information transfer over a limited-bandwidth communication link in 

the presence of data-corrupting factors, like noise and multipath propagation 

phenomena. Turbo decoders make use of very powerful soft-input/soft-output iterative 

decoding algorithms that are however numerically intensive [36]. Turbo codes achieve 

a performance very close to the Shannon limit, but at the expense of considerable 

processing complexity and decoding delays. With modern very large scale integration 

(VLSI) techniques, however, this complexity is tractable. There is a fundamental trade-

off between the bandwidth needed for transmitting signals and information and the 

amount of information and signal processing required (which also needs battery power) 

for coding and compression. The major features of turbo codes include: 

 Parallel or serial concatenated encoding 
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 Recursive convolution encoders are used 

 Pseudo-random interleaving is employed, and  

 Iterative decoding is used. 

We note that a single error correction code does not always provide enough error 

protection with reasonable complexity.  Since linear block codes (algebraic codes) are 

most effective in combating “bursty” errors (errors that arrive in bursts), and 

Convolution codes are generally more robust when faced with random errors or white 

noise, we believe that a much powerful code will be obtained using an encoder which 

links together an algebraic code followed by a convolution code. Serial concatenation 

was proposed by Forney in 1966 (see fig.4.1). 

 

  In 1974, Joseph Odenwalder combined linear block coding and convolution coding 

techniques to form a concatenated code, now referred to as a turbo code. In this 

arrangement, the encoder linked together an algebraic code followed by a 

convolution code. Performance was further enhanced by using an interleaver between  

 

 

 

 

  

 

  

 

  

   Fig. 4.1    Serial Concatenated Encoding and Decoding 

 

 

the two encoding stages to mitigate any bursts that  might be too long for the 

algebraic decoder to handle [50]. 

  

In 1993 [12], Claude Berrou and his associates perfected the turbo code and is 

currently the most powerful forward error-correction code. 
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4.2 HOW TURBO CODES WORK 
 

One of the most interesting characteristics of a turbo code is that it is not just a single 

code [28]. It is, in fact, normally a combination of two codes that work together to 

achieve a synergy that would not be possible by merely using one code by itself. In 

particular, a turbo code is formed by the parallel concatenation of two constituent 

codes separated by an interleaver.  Each constituent code may be any type of FEC 

code used for conventional data communications. Although the two constituent 

encoders may be different, in practice they are normally identical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2    A typical (generic) structure for generating turbo codes. 

 

The overall encoder is said to be systematic because one of the outputs is the same as 

the input. Fig. 4.2 shows a typical parallel concatenated (generic) structure for 

generating turbo codes.  

 

We note that the input data stream is applied directly to one of the encoders and the 

input to the second encoder is applied to its input through the interleaver, leading to 
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non-identical parity-check bits being produced by the two identical constituent 

encoders, denoted by Encoder-A and Encoder-B respectively. A relatively stronger 

code is thus created by encoding in parallel concatenation with a non-uniform 

interleaver, which is used to scramble the ordering of bits at the input of the second 

encoder. A pseudo-random interleaving pattern is used. It is very unlikely that both 

encoders will produce low weight code words. Three copies of the input are 

generated. First, the parity is computed on the original input data. Secondly, the 

original data is transformed by the interleaver, and its parity computed. Thirdly, the 

original data is appended. A word consisting of these three elements (parity of 

original data, parity of interleaved data, and original data) is then sent.  

 

The input data stream and the parity outputs of the two parallel encoders are then 

serialized (multiplexed) into a single turbo code word. The data bits are transmitted 

together with the parity bits generated by the two encoders. Thus, the overall code 

rate of the encoder is r = 1/3, excluding tail bits. The multiplexer can be used to 

increase the code rate from  3
1  to ½. The output of the turbo code encoder is a 

sequence stream of three components, namely two coded bit streams, and one 

systematic (uncoded) bit stream. The randomly permutated bit order is transmitted 

over the channel. 

 

Although each component encoder may employ algebraic coding or convolution 

coding, the overall encoder can be considered a block encoder because data are 

processed in blocks. The size of these blocks is dictated by the length of the 

interleaver that separates each component encoder. In a coded system, performance is 

characterized by low weight code words.  A good code produces low weight outputs 

with very low probability. A recursive systematic convolution code (RSC) produces 

low weight outputs with fairly low probability, although some inputs still cause low 

weight outputs. However, due to the presence of the interleaver, the probability that 

both encoders have inputs that cause low weight outputs is very low. Therefore, the 

parallel concatenation of both encoders will produce a good code. 

4.2.1 The Role of the Interleaver 

Interleaving is a practical way of enhancing the error correcting capability of a given 

code. It is a process of rearranging the ordering of a data sequence in a one to one 
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deterministic format [49]. The size and structure of interleavers greatly influence the 

performance of turbo codes. There are several types of interleavers which can be 

implemented. These include random interleavers, block interleavers, diagonal 

interleavers, and circular-shift interleavers. 

 

The random interleaver uses a fixed random permutation and maps the input sequence 

according to the permutation order. The block interleaver is the most commonly used 

interleaver in communication systems.  It writes in column wise from top to bottom 

and left to right and reads out row wise from left to right and top to bottom. A 

diagonal interleaver writes in column wise from top to bottom and left to right and 

reads out diagonally from left to right and top to bottom [50]. The circular-shifting 

interleaver has a permutation P defined by  

  LsiaiP mod)*()(               (4.1) 

such that a < L, a is relatively prime to L, and s < i  where i  is the index, a is the step 

size, and s is the offset. 

 

There are two related features of turbo codes [29] that make them different from the 

more traditional error-correcting codes of the 20
th
 century, namely: 

 The key insight is the realization that instead of producing a stream of binary 

digits from the signal it receives, the front-end of the decoder can be designed to 

produce a likelihood measure for each bit. 

 The decoder and encoder are designed so that they take advantage of this extra 

information. 

 

The encoder sends three sub-blocks of bits. The first sub-block is the k-bit block of 

payload data. The second sub-block is n/2 parity bits for the payload data, computed 

using the first recursive systematic convolution (RSC) encoder. The third sub-block is 

n/2 parity bits for a known permutation of the payload data, computed using the RSC 

encoder - that is, two redundant but different sub-blocks of parity bits for the sent 

payload. The complete block has n + k bits of data with a code rate of k/(n + k). 

 

For data transmission purposes over a mobile wireless channel BPSK is assumed, 

along with either an AWGN or Rayleigh flat-fading channel. 
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4.2.2 Turbo Code Generation Processes 
The theory of turbo code design and operation is based on the mathematics of 

recursive sequences. A sequence can be realized as the output of a linear feedback 

shift register. The terms “shift register sequence” and “recursive sequence” are 

mutually synonymous, and are used here interchangeably to refer to the same thing. 

A linear feedback shift register (LFSR) [51] of length  is a time-dependent device 

(running on a clock) of  memory cells each capable of holding a value from some 

field , such that with each clock cycle the contents of the memory cells are shifted 

cyclically by one position (to the right, say). While the LFSR discards (or outputs) the 

rightmost entry ob (and replaces it by 1b ), it computes the linear function  

onn bcbc  ...11           (4.2) 

of the present state vector  and the feedback coefficients , 

(see Fig.(4.3)) . Thus, the box with the entry "ADD"  represents an adder over , and 

the circle with entry  indicates multiplication by  [51].  In practice, the case of 

the binary field  is by far the most important one, but the general notion of a 

LFSR serves as a good intuitive way of modelling recursive sequences.  

 

 

    

    

   Fig. 4.3 Linear Feedback Shift Register (LFSR). 

 

Given the initial conditions , after  clock cycles the LFSR will hold 

the state vector , where    [51]. 

 
     (4.3) 
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Thus, the shift register sequence   produced by the LFSR will satisfy a 

linear recurrence relation of order ; namely, for   :  

  ………….……………………(4.4) 

      

Assuming by 
 
convention that , one can define the feedback polynomial of 

the LFSR as  

       ………………………….. (4.5) 

 
 
and its reciprocal polynomial  

 

   ……………..………………… (4.6) 

is called the characteristic polynomial of the LFSR. Using its companion matrix  

         ………………………………………..(4.7) 

the recursion (4.4) can be rewritten in terms of the state vectors as  

  ………………………………………(4.8) 

 is usually called the feedback matrix of the LFSR, and it satisfies the equation 

, where   and   denote the characteristic and the minimal 

polynomial of , respectively. 

One may characterize the shift register sequences over  by associating an arbitrary 

sequence  over  with the formal power series  

                            





0

.)(
k

k

k xFxx   ….…………………………….  (4.9) 

Then  is a shift register sequence if and only if   belongs to the field  of 

rational functions over . More precisely,   can be obtained from the LFSR of length 

 with feedback polynomial   if and only if  
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              …………………………………………………(4.10) 

for a suitable polynomial with , and this correspondence between 

shift register sequences  belonging to and polynomials  is a bisection. For 

instance, the Fibonacci sequence, defined by the recursion  with 

initial conditions  over the rational numbers, belongs to the 

feedback polynomial , and the polynomial  is simply 

.  Thus, the formal power series describing  is [51] 

 

   

  ….    ……………………... (4.11) 

There exists a uniquely determined polynomial , such that, a given shift register 

sequence  can be obtained from the LFSR with characteristic polynomial if and 

only if is a multiple of ; this polynomial is called the minimal polynomial of the 

shift register sequence . In other words,  is the characteristic polynomial of the 

linear recurrence relation of least order that is satisfied by  .  If  belongs to 

a LFSR of length , with characteristic polynomial , then is actually the 

minimal polynomial of ,  if and only if the first  state vectors   are 

linearly independent. 

 

The global turbo code is built by combining two constituent RSC codes with 

interleaved versions of the same information sequence u to be transmitted. This is 

accomplished using a pseudo-random interleaver; the interleaver implements a 

random permutation of the latter input sequence. In other words, the two constituent 

encoders are coding the same information sequence u but in a different order. For 

each input binary information symbol iu , we keep the systematic output s

ix = iu  of the 

first RSC encoder, and the parity outputs p

ix1  and p

ix 2 of both RSC encoders[52]. The 

three out  symbols are then multiplexed in order to  form the following turbo-coded 

sequence: 

 

{.., iu , p

ix1 , p

ix 2 , 1iu , p

ix1

1 , p

ix 2

1 , 2iu , p

ix1

2 , p

ix 2

2 , …,}.  ………………..(4.12) 
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This design results in a code rate of  r = 1/3. In practice, it is often necessary to 

increase the code rate via a puncturing technique which enables to select the coded 

bits following a particular pattern. The code rate can for instance be increased to ½ by 

selecting the sequence: 

                   {…, iu , p

ix1 , 1iu , p

ix 2

1 , 2iu , p

ix1

2 , 3iu , p

ix 2

3 ,…,}. …………………(4.13)                      

The data bits are transmitted together with the parity bits generated by the two 

encoders. Thus, the overall code rate of the encoder is r = 1/3, excluding tail bits. Let us 

assume that the number of input data bits is K, where 511440  K , the first 3K 

output bits of the overall encoder are in the form: X1, Z1, Z‟1, X2, Z2, Z‟2, … , XK, ZK, 

Z‟K , where Xk is the kth systematic (i.e., data) bit, Zk is the parity output from the 

upper (uninterleaved) encoder, and Z
‟
k is the parity output from the lower (interleaved) 

encoder. 

4.2.3 Channel Model 

Binary phase-shift keying (BPSK) modulation is assumed, along with either an 

AWGN or a flat-fading channel. The output of the receiver‟s matched filter is 

kkkk nSaY  , where 12  kk XS  for the systematic bits, 12  kk ZS  for the 

upper encoder‟s parity bits, 1'2 '  kk ZS  for the lower encoder‟s bits, ka  is the 

channel gain ( ka =1 for AWGN and is Rayleigh random variable for Rayleigh flat-

fading), kn  is Gaussian noise with variance[52]: 

 
))/(2/()123()/2/(12

obos NEKKNE          (4.14) 

sE  is the energy per code bit, bE is the energy per data bit, and oN  is the one-sided 

noise spectral density. Details of the decoding process are contained in reference [52]. 

 

4.3 TURBO CODE DECODERS 

 

Turbo codes get their name because the decoder uses feedback, like a turbo engine. A 

turbo code decoder (like the one illustrated in Fig. 4.4 below) operates in an iterative 

manner. Full iteration consists of two half-iterations, one for each constituent RSC 

code. The operation of RSC decoders is well articulated in [37]. 
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To decode the (n + k) - bit block of data, the decoder front-end creates a block of 

likelihood measures, with one likelihood measure for each bit in the data stream. 

There are two parallel decoders, one for each of the n/2 – bit parity sub-blocks. Both 

decoders use the sub-block of k likelihood of the payload data. The decoder working 

on the second parity sub-block knows the permutation the encoder used for this sub-

block. 

The receive process, requires an analogue input signal, two identical decoders, and an 

interleaver. It produces confidence value strings. The analogue input signal is 

transformed into digital confidence values, as well as parity check values. Confidence 

values are exchanged between the decoders in an iterative data-exchange process. A 

strong 1 in one detector influences the other; both decoders continue to exchange data 

until their highest-likelihood solutions converge, which generally occurs in 4 to 10 

steps.  

A „good‟ linear code is one that has mostly high-weight code words (except, of 

course, the mandatory all-zeros code word). High weight code words are desirable 

because it means that they are more distinct, and thus the decoder will have an easier 

time distinguishing among them. A turbo code generator is used to reduce the number 

of low-weight code words [28]. 

 

APP  =  a posteriori probability; DeMUX = Demultiplexor                                

 

   Fig. 4.4:  Turbo decoder. 
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Since the weight of the turbo code word is simply the sum of the weights of the input 

and the parity outputs of the two constituent words, we can allow one of these parity 

outputs to have low weight (as long as the other has high-weight). 

Because the second encoder‟s input has been scrambled by the interleaver, its parity 

output is usually quite different from the first encoder‟s. Thus, although it is possible 

that one of the two encoders will occasionally produce a low-weight output, the 

probability that both encoders simultaneously produce a low-weight output is 

extremely small. This improvement is called interleaver gain and is one of the main 

reasons why turbo codes perform so well. 

 

For transmission in a multipath environment, the primary benefit of an interleaver is 

to provide time diversity (when used along with error-correction coding)[19]. The 

larger the time span over which the channel symbols are separated, the greater chance 

there is that contiguous bits (after deinterleaving) will have been subjected to 

uncorrelated fading manifestations; thus the greater the chance there is to achieve 

effective diversity. It is important to note [19] that the interleaver provides no benefit 

against multipath unless there is motion between the transmitter and receiver (or 

motion of objects within the signal-propagating paths). As the motion increases in 

velocity, so does the benefit of a given interleaver to the error-performance of the 

system. 

 

Turbo codes make it possible to increase data rates without increasing the power of a 

transmission, and they can be used to decrease the amount of power used to transmit at 

a certain data rate. The main drawback of turbo codes is the high decoding complexity 

and a relatively high latency, which makes it unsuitable for some applications. For 

satellite use, this is not of great concern; since the transmission distances it self 

introduces latency due to the limited speed of light. 

4.4 THE CODING DILEMMA [28] 
 

Shannon argued that large block-length random codes could achieve channel 

capacity. We note, however, that random codes are not feasible in practice because 

the code must have enough structures that permit decoding with hardware or software 
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of reasonable complexity. Nevertheless, codes with structure do not perform as well 

as random codes. This leads to the “Coding Dilemma”: namely that “all codes are 

good, except those that we can think of”. Therefore, the best solution is to make the 

code appear random, while maintaining enough structure to permit reliable decoding. 

This is why a pseudo-random interleaver must be incorporated in the turbo code 

generation system. Although turbo codes possess random-like properties, decoding is 

possible since the interleaving pattern is known. 

4.4.1 Turbo Code Performance Factors and 

Tradeoffs   
Analysis of simulation results using data from various researchers [31, 32] of turbo 

code performance reveals the following: 

 The turbo code is a powerful error correcting technique under noisy and fading 

environments. Its performance approaches the Shannon limit within 0.5 dB. 

 However, there are several factors which must be considered in the turbo code 

design:  a trade-off between the BER and the number of iterations to be used must 

be considered first, and secondly, the effect of the frame size on the BER must be 

taken into account. We note that although the turbo code with a larger frame size 

has better performance, the output delay in this case is longer.  

 Thirdly, the code rate is another factor that must be considered. A higher coding 

rate demands more bandwidth. For a fixed constraint length, a decrease in code 

rate improves the performance, whereas for a fixed code rate, an increase in 

constraint length improves the performance. 

 We also note that the behaviour of the turbo code decoder is quite different under 

different channel environments; for example, the performance of the turbo code is 

much worse under correlated Rayleigh fading channels than with AWGN or 

uncorrelated Rayleigh fading channels. 

 The major drawbacks of a turbo code design are its complexity and latency 

(decoding) time. Turbo code decoding is generally computationally intensive; 

therefore most of the simulated performance results are for high code rates, short 

constraint lengths, and small frame sizes. 
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4.4.2 Practical Issues 
The performance of a turbo code may be more affected by the various parameters of the 

component codes, block size, interleaver design and weight spectrum [12, 33]. The bit 

error rate (BER) curve of a turbo code is divided into two regions. The first region is 

called the “waterfall region”, in which the BER decreases rapidly at low signal-to-noise 

ratios (SNR) and the second region is called the “error-floor region”, whereby the BER 

decreases at a low rate at high SNRs. In the waterfall region the performance depends on 

the existence of low weight code words. Low weight code words reduce the decoding 

convergence, thus the BER decreases rapidly  and the number of iterations required in the 

decoding process will also be reduced. The error-floor region occurs due to the presence 

of a few low weight code words. At low SNR, these code words are insignificant, but as 

the SNR increases they begin to dominate the performance of the code. 

 

Although turbo codes have the potential to offer unprecedented energy efficiencies, 

they have some peculiarities that should be taken into consideration [28]. First, while 

the BER curve falls off sharply with increasing SNR for moderate error rates (e.g., 

BER> 510  ), the BER curve begins to flatten at higher SNR. This characteristic is 

observed for the case where the BER was simulated down to very small values. The 

region where the BER curve flattens out is called the error floor and hinders the ability 

of a turbo code from achieving extremely small bit-error rates. The error floor is due to 

the presence of a few low-weight code words. At low SNR, these code words are 

insignificant, but as SNR increases, they begin to dominate the performance of the 

code. 

The error flooring effect can be combated in several ways. One interesting approach 

is to use two different RSC encoders. One RSC encoder is optimized to perform well 

at low SNR, while the other is optimized to reduce the error floor. The resulting 

asymmetrical turbo encoder provides a reasonable combination of performance at 

both a low and high SNR. Unfortunately, although the error floor is reduced, it is still 

present. Another way to reduce the error floor is to arrange the two constituent 

encoders in a serial concatenation, rather than in a parallel concatenation. Such a 

serially concatenated Convolution codes (SCCCs) offer excellent performance at high 

SNR, as the error floor is virtually eliminated. However, performance at low SNR is 

considerably worse than it is for parallel concatenated codes (also called parallel 
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concatenated Convolution codes (PCCCs). An alternative to choosing between 

SCCCs and PCCCs is to use hybrid turbo codes, which combine features of each type 

of code. 

4.5 PERFORMANCE OF TURBO CODES IN FADING 

CHANNELS 
 

Turbo codes are reported [33] to be very powerful in additive white Gaussian noise 

(AWGN) channels. Turbo codes have also been shown to perform very well in 

rapidly fading channels [34], but to perform less well in slow fading channels. In 

rapidly fading channels, coding together with interleaving techniques are used to 

spread consecutive code bits over multiple independently fading blocks to improve 

performance. However, in slow fading channels coding together with interleaving 

techniques cannot in general be used in an effective manner because delay and 

latency considerations limit the depth of interleaving. This situation compromises in 

particular the performance of turbo codes because occasional deep fades cause severe 

error propagation in the iterative decoding process [35]. Multimedia systems require 

varying quality of service, and therefore we need to consider various performance 

factors. For instance, for voice communication and teleconferencing low latency is 

desirable, whereas for data transmission, low bit/frame error rates (BER or FER) are 

desirable. Fortunately, the tradeoffs inherent in turbo codes match with the tradeoffs 

required by multimedia systems. Although for data transfer large frame sizes are 

used, with low bit error rates, the associated long latency has to be tolerated with. For 

voice communication small frame sizes are used, leading to short latency, however, 

the associated bit error rates are much higher. 

 

In fading channels errors associated with the demodulator tend to occur in bursts, 

corresponding to the times when the channel is in deep fade [18]. Most codes 

designed for AWGN channels cannot correct for the long bursts of errors exhibited in 

fading channels. Therefore, it is not surprising that codes designed for AWGN 

channels only, can exhibit worse performance in fading channels than an uncoded 

system. To improve performance of coding in fading channels, coding is typically 

combined with interleaving to mitigate the effects of error bursts [18]. The basic 

premise of coding and interleaving is to spread error bursts due to deep fades over 
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many code words such that each received code word only exhibits at most a few 

simultaneous symbol errors, which can be corrected for. The spreading out of burst 

errors is accomplished by an interleaver and the error correction is accomplished by 

the code. The size of the interleaver must be large enough so that fading is 

independent across a received code word. Slowly fading channels require large 

interleavers, which in turn can lead to large delays.    

Coding and interleaving [18] is a form of diversity, and performance of coding and 

interleaving is often characterized by the diversity order associated with the resulting 

probability of error. This diversity order is typically a function of the minimum 

Hamming distance of the code. Thus, designs for coding and interleaving on fading 

channels must focus on maximizing the diversity order of the code, rather than on 

metrics like Euclidean distance which are used as performance criterion in AWGN 

channels. 

4.6 TURBO CODE DESIGN COMPLEXITY 

 

The turbo code is a very complex channel coding scheme. The turbo encoder is a 

parallel concatenation of two recursive systematic convolution (RSC) codes. The 

turbo code decoder is an iterative serial concatenation of two soft output Viterbi 

algorithm (SOVA) decoders. In addition, the presence of interleavers in both the 

encoder and the decoder further complicates this coding scheme [40]. 

 

The two common methods of evaluating the performance of turbo codes are using 

theoretical analysis and using computer simulation. Theoretical analysis of turbo 

codes, however, is very difficult due to the structure of the coding scheme. A few 

researchers have attempted to analyze turbo codes using the theoretical approach; 

however, their results do not match closely to computer simulation results. The 

theoretical analyses presented in their publications are not convincingly presented and 

are thus difficult to follow. 

 

 

 

 

 



 146 

 

4.7 TURBO CODE APPLICATIONS IN EMERGING 

 WIRELESS TECHNOLOGIES 

 

4.7.1 Cellular Mobile Radio Communications 
Wireless mobile communications are often faced with the problem of unpredictable and 

time-varying fading phenomena and therefore demand more robust systems to provide 

the required immunity.  For applications where delay versus performance is critical, 

turbo codes offer a wide trade-off space at decoder complexities equal to or better than 

those of conventional convolution or block code performance. The major benefit is that 

turbo codes can work with smaller constraint-length encoders. The major drawback of 

turbo encoders/decoder systems is the decoder latency. Turbo codes with short delay 

are being heavily researched. Turbo codes generally outperform convolution and block 

codes when interleavers exceed 200 bits in length [46]. Since 1999, in the area of third-

generation mobile networks, UMTS in Europe and CDMA2000 in the USA and in Asia 

have been using Turbo Codes for broadband data services that require a guaranteed 

transmission quality with a bandwidth of more than 64 kbps. 

 

CDMA2000 is an important third generation cellular standard, which was formulated 

by the third generation partnership project (3GPP). As in Universal Mobile Telephone 

Service (UMTS) system, CDMA2000 systems use turbo codes for forward error 

correction (FEC). While the turbo codes used by these two systems are very similar, the 

differences lie in the interleaving algorithms, the range of allowable input word length 

and the rate of constituent RSC encoders [46]. 

4.7.2 Digital Video Broadcasting 
In 2000, in the field of digital video broadcasting (DVB), Turbo Codes were chosen 

for return channels that allow interactive services either by satellite (DVB-RCS: 

Return Channel Satellite) or hertz (DVBRTC: Return Channel Terrestrial). Similarly, 

broadband wireless local-loop systems in Europe (ETSI Hiperaccess) and in America 

(IEEE 802.16.1) also chose this technology as optional coding to increase 

transmission rates.  Currently turbo codes are used as part of the Digital Video 

Broadcasting (DVB) standards. 
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4.7.3 Long-Haul Terrestrial Microwave Links 
Microwave towers are spread across the countryside, usually on hilltops and 

communications between them is subjected to weather induced fading, shadowing 

and vegetation profiles. Since these links utilize high data rates, turbo codes with 

large interleavers are used to combat the fading, while adding only insignificant 

delays. Furthermore, substantial power savings can be realized for towers on towers 

in remote areas especially, when turbo codes are used [46]. 

4.7.4 Military Applications 
 Since turbo codes are applicable in spread-spectrum systems, this provides increased 

opportunity for anti-jam and low probability of intercept (LPI) communications. In 

particular, very steep BER versus     Eb/No  curves lead to a sharp demarcation between 

geographic locations that can receive communication with just sufficient Eb/No and 

those where  Eb/No is insufficient. Turbo codes are used in a number of military and 

defence application.     

4.7.5 Image Processing  
Embedded image codes are very sensitive to channel noise because a single bit error 

can lead to irreversible loss of synchronization between the encoder and the decoder. 

Turbo codes are used for forward error correction in robust image transmission. They 

are suited to protection of visual signals, since these signals are typically represented 

by a large amount of data even after compression. 

4.7.6 Wireless Local Area Networks (WLANs) 

Turbo codes facilitate a better performance of a WLAN compared to the case when 

traditional Convolution codes are used. Using turbo codes, however, an 802.11a 

system must be configured for high performance. The resulting benefits to the WLAN 

system are that it requires less power, and it can transmit over a greater coverage area. 

The turbo code solution is used to reduce power and boost performance in the 

transmit portion of mobile devices in a wireless local area network (WLAN) [46]. 

4.8 CHAPTER SUMMARY 

 

In this chapter we have shown that turbo codes are a natural forward error-correction 

scheme for third-generation high-speed wireless data services and their application in 

the next generation equipment is assured because of their good performance.  A turbo 
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code encoder produces low weight outputs with very low probability. It consists of two 

RSC encoders and an interleaver between the systematic input and the input of the 

second RSC encoder. Because of the interleaver, the probability of both encoders 

having inputs that would cause low weight outputs is very low. Therefore the parallel 

concatenation of both encoders produces a robust code. Simulation results confirm that 

turbo codes have good performance and flexibility and are therefore suitable for 

wireless local area networks (WLANs) applications and for next generation mobile 

phones. The coding gain in the waterfall region ranges from 0.5 to 0.7 dB at a BER of 

10
-4

 depending on the channel conditions. So it is important to define the BER very 

well, in order to make a proper code selection. Other concerns, such as latency and 

availability of low cost, low power components, may be of greater concern than the 

small performances differences at a particular Eb/No operating point. Turbo codes are 

mainly attractive for high-data-rate services due to the relatively long interleaver. For 

extremely short interleavers, Convolution codes outperform turbo codes. 

Turbo codes have extraordinary performance at low SNR, namely, performance is 

very close to the Shannon limit. This is due to a low multiplicity of low weight code 

words [39]. However, turbo codes have a BER “floor”. This is due to their low 

minimum distance. Performance of turbo codes improves for larger block sizes. 

However, larger block sizes mean more latency (delay). Nevertheless larger block 

sizes are not more complex to decode. We also note that the BER floor is lower for 

larger frame/interleaver sizes. Finally, turbo codes have been compared for short 

frame sizes, which is another possible application for turbo codes in third-generation 

wireless systems. 
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CHAPTER FIVE 

INVESTIGATION OF RADIO 

PROPAGATION MODELS USING MATLAB-

BASED GUIS 
 

5.1 INTRODUCTION 
 

The propagation of radio waves through a wireless environment is influenced by 

various mechanisms which affect the fidelity of the received signal. Accurate 

prediction of these effects is essential in the design and development of a wireless 

communications system. Accurate prediction of these propagation effects allows   

communications engineers to address the trade-off between radiated power and signal 

processing by developing an optimum system configuration in terms of modulation 

schemes, coding, frequency band and bandwidth, antenna design, and transmission 

power. 

 

The mobile radio channel places fundamental limitations on the performance of 

wireless communication systems. The transmission path between the transmitter and 

receiver can vary from simple line of sight to one that is severely obstructed by 

buildings, mountains and foliage. Unlike wired channels which are stationary and 

predictable, radio channels are extremely random and do not offer easy analysis. Even 

the speed of motion impacts how rapidly the signal fades as a mobile terminal moves 

in space. Modelling the channel has historically been one of the most difficult parts of 

mobile radio system design, and is typically done in a statistical fashion, based on 

measurements made specifically for an intended communication system or spectrum 

allocation.  

 

To be able to design good and reliable wireless communication systems, a wireless 

engineer must be well versed with what happens to the signal as it travels from the 

transmitter to the receiver. Simulation of radio-frequency (RF) signals with 

appropriate statistical properties can readily facilitate this process. Statistical testing 

can subsequently be used to establish the validity of the fading models used. This 
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chapter presents the pathloss models and fading models. It then concentrates on the 

approaches used to simulate these models using MATLAB.   

 

One of the objectives of this research was to develop a software tool to determine 

signal strength and pathloss at any distance between the transmitter and receiver in 

any given environment and to simulate the variation of the signal over short distances 

and short time durations (fading). This software has been designed and implemented 

successfully.    

5.2 LARGE SCALE MODELS 
 

In the process of designing GUIs for the study of large scale models, analytic 

equations specific to each model were used to carry out the computations for the 

plots. These equations are available in literature and have already been quoted in this 

thesis. These models give variations of the signal strength and pathloss as a function 

of distance. For each model, a clear understanding of the equations and 

accompanying facts and assumptions is obtained first and algorithms and MATLAB 

code development follow, to complete the design.  

 

Examples of large scale models considered here include: 

 The free space/path propagation model, 

 The Okumura-Hata model, and 

 The HF and MF Ground wave models for Urban areas. 

 

Two frequencies are used for comparison purposes. 900 MHz and 1800 MHz are 

chosen as typical values because these frequency bands are used for cellular networks 

in Uganda. However, these values can be changed depending on the user‟s 

requirements. The antennas at both ends are taken to have unity gain. The gains can 

be changed as well. Also included is a calculation section which gives the user 

answers for received power and pathloss at any distance without reading from the 

GUI. Note that the distance entered in the calculation section does not necessarily 

have to be within the range entered for the distance of coverage. For example, at a 

distance of 4 km, the values are shown at 900 MHz.  The system loss L is usually 
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kept as 1 which indicates that there is no loss in the system. In practice, this value is 

greater than 1. 

5.2.1 The Free Space Model GUI 

The attenuation of a signal propagating in free space over a distance of d meters 

between two antennas is according to section 3.2.5 expressed as: 

            

   
tP

Po   [dB]  =  10 log 
tP

Po   =  20 log 








d



4
   +  10 log ( Txg )  +  10 log ( Rxg ) ...(5.1)                

                                                                                    

where oP  is the received power, tP  is the transmitted power,   is the wavelength of 

the signal, Txg  is the gain of the transmitter antenna and Rxg  is the gain of the 

receiver antenna (both gains being in the direction of the straight line that connects 

the two antennas in space. The received power is inversely proportional to the square 

of the distance d and the square of the signal frequency. 

 

 

 

    Figure 5.1: A GUI for a free-space model 
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Figure 5.1 shows a GUI that has been designed for the free space model. The free-

space power loss model MATLAB code is found in Appendix C of the thesis. Note 

that the input for distance does not start at zero. This is because d  must be in the far 

field. Given antenna size and wavelength, the far field distance can be obtained from 

the condition  


22D
d  , where D is the largest linear dimension of the antenna. 

 

The Simulate button enables the user to obtain plots for the received signal 

strength and path loss where as the Close button closes the window. When pressed, 

it first prompts the user to conform whether or not he wants to close the window. The 

Reset button takes the user back to the default values in the different edit boxes.  

 

Two frequencies are considered for comparison purposes. 900 MHz and 1800 MHz 

are chosen as base values because these are the two frequency bands used for cellular 

networking in Uganda. However, these values can be changed as appropriate to the 

user‟s requirements. The antennas at both ends are taken to have unity gain. The gains 

can be changed as well. Note that the distance entered in the calculation section does 

not necessarily have to be within the range entered for the distance of coverage. For 

example, at a distance of 4 km, the values are shown at 900 MHz. These values must 

of course be similar to those obtained from the graph. The system loss L is usually 

kept as 1 which indicates that there is no loss in the system. In practice, this value is 

greater than 1. 

5.2.2 The Okumura-Hata Model GUI 

Because the Hata model is an empirical formulation of the graphical pathloss data 

provided by Okumura, the two models were combined in a single GUI represented by 

the design equation 

( ) 69.55 26.16log 13.82log ( ) (44.9 6.55log )logurban c te re teL dB f h a h h d       

                                                                                          ………………………...(5.2)     

where cf  is the frequency which varies from 150 MHz to 1500 MHz, teh  and reh are 

the effective heights of the base station and the mobile antennas (in meters) 

respectively, d is the distance from the base station to the mobile antenna, a( reh ) is the 
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correction factor for the effective antenna height of the mobile unit, which is a 

function of the size of the area of coverage [32]. 

 

The GUI simulates power received as well as path loss for propagation in different 

areas. The areas or environments considered by the GUI were large city, medium-

sized city, small city as well as sub-urban area and open countryside (rural area). A 

calculation section is provided to give accurate values of pathloss and received power 

at any distance (even outside the scale of the graphs). Two transmitting antenna 

heights are input for comparison purposes. It is evident that the higher the antenna, 

the greater the signal strength at the receiver, and consequently the pathloss suffered. 

 

 

 

 

   Figure 5.3: A GUI for the Okumura-Hata model 
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5.2.3 GUI for HF and MF Ground Wave Model for          

 Urban Areas  
This model looks at ground wave propagation in urban areas at HF and MF assuming 

various weather conditions. Kampala City was used as a case study. The key novelty 

in the new model is the inclusion of three building-complex parameters, i.e. building 

density parameter rb, sight parameter rs and environmental parameter re, and a new 

height-gain factor Gh. This is because buildings are seen as the primary barriers which 

affect propagation of ground-waves at MF and HF in urban areas. The effect of 

buildings can be broken down as follows: 

 The number of buildings in an area (building density) 

 The height of buildings with respect to the transmitting antenna height (sight 

parameter). 

 The environment around the receiver as far as buildings are concerned 

(environmental factor). 

 

 

             Figure 5.4:  A GUI for the new HF/MF Ground-wave model 
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The above caption shows the GUI. The signal characteristics at both MF and HF are 

plotted on the same graphs for comparison purposes. As expected, there is more 

pathloss and hence less received power strength at HF than at MF as expected. 

5.3 SMALL SCALE MODELS 
 

Small scale propagation models characterize the rapid fluctuations of the received signal 

strength over very short travel distances (a few wavelengths) or short time durations (on 

the order of seconds). In other words, these models quantify the variability of the signal 

strength in close proximity to a particular location. 

 

Small-scale models also describe the rapid fluctuation in the amplitude of a radio 

signal over a short period of time or travel distances and therefore large scale effects 

may be ignored. Fading is caused by the interference between two or more versions 

of the transmitted signal which arrive at the receiver at slightly different times. These 

waves, called multipath waves, combine at the receiver antenna to give a resultant 

signal which can vary widely in amplitude and phase depending on the intensity and 

relative propagation time of the waves and the bandwidth of the transmitted signal. 

 

Radio frequency signals with appropriate statistical properties can readily be 

simulated.  Examples of small scale models simulated using MATLAB include: 

 The Rayleigh Fading Model 

 The Rician Fading Model 

 The Nakagami Distribution, and  

 The Log-Normal fading distribution model. 

5.3.1 The Rayleigh Fading Model 

The multipath faded signal is simulated using MATLAB to understand the 

relationship between the number of paths (N) and the statistics of the received signal. 

The GUI developed allows the user to vary the carrier frequency so as to compare 

simulations at different frequencies of propagation. N can also be varied at the user‟s 

discretion and a large value gives you a better Gaussian distribution approximation.  
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For a given time instant, the received signal in the case of a stationary receiver is 

generated using equation (5.3).  

                    
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If the Doppler-effect induced by motion is considered we use equation (5.4).  

                     
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to describe the received signal, where i

c

di
c

V



 cos  is the angular Doppler shift 

of the signal. 

The path amplitudes are taken to be Weibull distributed and generated using the 

function weibrnd() from the MATLAB Statistics Toolbox. The 2-parameter Weibull 

distribution allows the flexibility of making it easy to see the effects of varying 

scattering amplitudes. For example, a function weibrnd(0.5,0.5,[1 (N+1)]) produces 

N random values that can be taken to represent the random amplitudes.  

 

The phases are also taken to be uniform in the range [0,2л] and are generated using 

the function unifrnd(), also from the Statistics Toolbox. For example, a function 

unifrnd(0,1:(N+1)) generates N random values that can be used to represent the 

random phases. Subsequently, the envelope is calculated using equation (5.5), which 

represents the received signal envelope: 

   22
)()( tQtIR      …………………… ………………………….. (5.5) 

When N is large, the in-phase and quadrature components will be Gaussian.  

 

The probability density function (pdf) of the received signal envelope can be shown 

to be Rayleigh distributed: 
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Note that σ is the rms value of the received voltage signal before envelope detection, 

and σ
2
 is the time-average power of the received signal before envelope detection. 

The probability that the envelope of the received signal does not exceed a specified 

value R is given by the corresponding cumulative distribution function (CDF) below: 
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The mean value meanr  of the Rayleigh distribution is given by: 
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Two GUIs for Rayleigh fading are depicted in Fig. (5.5) and (5.6). The first simulates 

the fading phenomena and the Rayleigh envelope as well as the probability and 

cumulative distribution functions (as given by equations (5.6) and (5.7)). The second 

GUI is more comprehensive. In addition to these, it also simulates the outage 

probability as well as showing the in-phase and quadrature components separately. 

                                 

 

   

 

   Fig. 5.5 A GUI to simulate Rayleigh fading 
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Outage Probability 

In a fading radio channel, it is likely that a transmitted signal will suffer deep fades 

that can lead a complete loss of the signal or outage of the signal. The outage 

probability is a measure of the quality of the transmission in a mobile radio channel. 

Outage is said to occur when the received signal power goes below a certain threshold 

level (a constant value shown by a straight line on the simulations). This probability 

can be calculated as the integral of the received signal power R(t) as 

                       
thP

out dttRP
0

,)(  ………………….…………………………… (5.9)    

       

thP  is the threshold power. 

 

The concept of outage can be demonstrated with MATLAB using the results from the 

previous sections. The procedure to find the outage probability is as follows: 

1. Calculate the received signal power as given in specific equations previously. 

2. Set a threshold power level for the received signal relative to the average signal 

power. 

3. Count the number of times in the sample interval that the received signal power 

goes below this threshold. 

4. Using the basic concept of probability, the outage is then calculated by taking  the 

ratio of the count in step 3 to the total number of samples. 

5.3.2 The Rician Fading Distribution GUI 
The main difference between Rayleigh and Rician fading is that where as Rayleigh 

fading considers a number of multipath components only, giving the total received  

signal, in the Rician model, there exists a direct path between the transmitter and 

receiver. This direct path or LOS gives rise to a dominant signal component which, in 

addition to the multipath components, yields the total received signal. GUIs designed 

for the Rician fading model are depicted in  Figures  (5.7) and (5.8).  Fig. (5.7) shows 

simulations for the signal fading and received envelope while figure  (5.8) shows the 

Rician PDF and CDF for the specified parameter inputs.  
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  Figure 5.6: A more comprehensive simulation of Raleigh fading 
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   Figure 5.7: A GUI for simulating Rician Fading 
  

 

 

  Fig. 5.8: A GUI for simulating the Rician PDF and CDF 
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5.3.3 The Nakagami  Fading Model GUI 

Parameter   controls the distribution spread and is given by  2rE . The 

corresponding Nakagami-m cumulative distribution function is given by: 

  
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P(,) is the incomplete gamma function. Note that when m=1, the Nakagami model 

reduces to the Rayleigh model. This is a special case of the model. When m>1, the 

fluctuations in signal strength reduce and the models gradually tends to Rician as m 

increases. 

 

The GUI shown in Figure (5.9) is a simple simulation that produces plots of the 

Nakagami probability and cumulative distribution functions when the envelope size is 

specified. The PDF is similar in shape to that of the Rayleigh and Rician distributions. 

It is possible to describe both Rayleigh and Rician fading with the help of a single 

model using the Nakagami distribution. The fading model for the received signal 

envelope, proposed by Nakagami, has the PDF given by: 
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()  is a gamma function and m is the shape factor (constrained to 5.0m ) given by 
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5.4 LOG-NORMAL DISTRIBUTION 
 

This distribution is obtained from the large-scale model that predicts the local signal 

strength in an area by the use of a reflection exponent n as discussed earlier in section 

3.2.7. The fading over large distances causes random fluctuations in the mean signal 

power. Evidence suggests that these fluctuations are log-normally distributed. A 

heuristic explanation for encountering this distribution is as follows: 

 

The transmitted signal undergoes multiple reflections at the various objects in its path, 

before reaching the receiver. Then it splits up into a number of paths, which finally 
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combine at the receiver. The expression for the transmitted signal is the same as that 

given in equation (5.5), except that the path amplitudes are themselves the products of 

the amplitudes due to the multiple reflections. They are given by:   

  ia    


N

j

jia
1

           ………………………………………………………… (5.13) 

N  is the number of multiple reflections per path. Multiplication of the signal 

amplitude leads to a log-normal. The fact that the mean of the envelope is lognormal 

is well established in literature which gives the lognormal PDF as: 
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  Fig. 5.9: A GUI for simulating Nakagami model distribution. 
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   Fig. 5.10: A GUI for Log-Normal fading distribution 
 

For this distribution, log(r) has a normal distribution with μ as its mean and σ
2
 as its 

variance.  

5.5 CHAPTER SUMMARY 

 

The mobile radio channel places fundamental limitations on the performance of 

wireless communication systems. The transmission path between the transmitter and 

receiver can vary from simple line of sight to one that is severely obstructed by 

buildings, mountains and foliage. Unlike wired channels which are stationary and 

predictable, radio channels are extremely random and do not offer easy analysis.  

 

To be able to design good and reliable wireless communication systems, a wireless 

engineer must be well versed with what happens to the signal as it travels from the 

transmitter to the receiver. Simulation of radio-frequency (RF) signals with 
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appropriate statistical properties can readily facilitate this process. Statistical testing 

can subsequently be used to establish the validity of the fading models used. This 

chapter presents the path loss models and fading models. It then concentrates on the 

approaches used to simulate these models using MATLAB.   

 

Graphic user interfaces (GUIs) are a simple way of illustrating the effect of varying 

the values of the various parameters, which influence the behaviour of the 

information signal, especially due to fading and noise. MATLAB code for the 

following graphic user interfaces (GUIs) was developed: 

 Free-space model 

 Okumura-Hata model 

 HF and MF ground-wave model for urban areas 

 Rayleigh fading model 

 Rician fading model  

 Nakagami fading model, and the 

 Log-normal fading distribution model. 
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CHAPTER SIX 

TURBO CODE SIMULATION 

EXPERIMENTS AND ANALYSIS OF 

RESULTS 
 

 

6.1 INTRODUCTION 
 

In this chapter we investigate the performance of turbo codes in the wireless 

environment. We especially study the effects of the code block length (block size), 

interleaver size, the number of decoding iterations, and the code rate on bit error 

probability (BER).  

6.2 SIMULATION SETUP FOR TURBO CODES 

The simulation setup is composed of three distinct parts, namely the encoder (as 

discussed in sections 4.1 and 4.2), the channel (whose details are found in chapters 

three and four) and the decoder (discussed in section 4.3). The simulation of the turbo 

code encoder is based on its description in section 4.2. The simulated turbo code 

encoder is composed of two identical RSC component encoders. These two 

component encoders are separated by a random interleaver. The random interleaver is 

a random permutation of bit order in a bit stream. This permutation of bit order is 

stored in memory so that the interleaved bit stream can be deinterleaved at the 

decoder. The output of the turbo code encoder is described by three streams, one 

systematic (uncoded) bit stream and two coded bit streams, as illustrated in Fig. 4.2. 

The systematic bit stream can only have one set of m tail bits from one of the two 

recursive encoders.  

 

In its basic form, the turbo code encoder [40] is a rate 1/3. However, in many turbo 

code publications a rate of ½ is indicated. This is accomplished in practice by 

puncturing the coded bit streams of the turbo code. The puncturing pattern is that for 

every one coded bit stream, the odd bits are punctured out, and for the other coded bit 

stream, the even bits are punctured out.  The BER performance of the turbo codes are 

studied by simulation using an AWGN channel and a Rayleigh fading channel. The 
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discrete model of the AWGN channel is given by the expression 


 kkk zxy , 

where 


kx is the transmitted symbol and 


kz is a Gaussian random vector representing 

channel noise with independent and identically distributed (i.i.d.) components with 

mean zero and variance 2/oN . Similarly, the discrete model of the Rayleigh fading 

channel is given by the expression


 kkkk zxay , where 


kx and 


kz are the same as 

above, and the sak '  are i.i.d. random variables with a Rayleigh distribution of the 

form 
2

2)( aaeaf  for .0a  

 

For the Rayleigh fading channel, the decoder incorporates the sak '  into the decoding 

algorithm. In other words, it is assumed that the receiver can determine the 

multiplicative fading factors. The discrete models for the AWGN  and Rayleigh 

channels are illustrated in Fig. 6.1. 
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   (a)  AWGN Channel           (b) Rayleigh Fading Channel 

 

 

  Fig. 6.1   AWGN and Rayleigh Fading Channel Models 

 

6.2.1 Turbo Code Simulation Software  
The TURBO8.EXE program developed by the Communications Research Centre, 

Canada, was used to generate the simulation results for various turbo code generation 

configurations. But any other suitable simulation tool, for example, MATLAB 

Simulink could be used. The TURBO8.EXE is a stand-alone executable program for 

simulating the performance of binary rate 1/3 (or higher with puncturing) 8-state 

turbo codes. The program is invoked by calling it at a command line with the name of 

+ X + 
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a file (referred to as a parameter file) that specifies the parameters of the desired 

simulation. The turbo decoder uses iterative soft-in/soft-out a posteriori probability 

(APP) decoding principles based on low-complexity enhanced max-log-APP 

processing with scaled extrinsic information, as described in [54]. The turbo decoder 

is iterative. A half iteration is defined as the APP processing of one of the two RSC 

codes. The turbo decoder has an early stopping feature to reduce the average number 

of iterations performed.  Simulation results are appended in Appendix A, and 

MATLAB code has been designed (see Appendix B) for plotting the results 

graphically. 

 

6.2.2 Turbo Code Performance as a Function of 

Interleaver  Size and Frame Size 
The choice of the interleaver size is dependent on the expected maximum size of the 

input frame. When the input frame size is increased, the interleaver is made large, and 

this adds to the complexity of the design. In turn this is accompanied by increased 

decoding latency and power consumption. The probability of bit error )( bP  for a 

turbo code is inversely related to the interleaver length as given by the following 

equation: 

                                       o

b
efffree

N

E
Rd

b e
N

P
,1 

     …………………………. …… (6.1) 

Therefore, for everything else equal, a turbo code with a long interleaver length  will 

outperform a turbo code with a short interleaver length in terms of BER. However, 

this performance improvement comes at a cost since it was found that processing time 

increases with interleaver length. 

 

Interleaving is the process of rearranging the ordering of an incoming bit stream in 

some deterministic order specified by the interleaver module. The inverse of this 

process is called deinterleaving and restores the received sequence to its original order. 

Interleaving is a practical way of enhancing the error-correcting capability of channel 

coding. In turbo coding the interleaving process is implemented before the data to be 

transmitted is encoded by the second RSC code encoder. The unique role of the 

interleaver is to construct a long block code from short Convolution codes, which 

enables the resulting long codes to approach the Shannon capacity limit.  The 

interleaver also spreads out the burst errors, as mentioned in section 4.5. Interleaving 
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provides scrambled information data to the second RSC code encoder and decorrelates 

inputs to the two component decoders so that an iterative suboptimum-decoding 

algorithm based on uncorrelated information exchange between the two decoders can 

be applied [49].   

 

Since the turbo code is a block code, it causes a time delay before getting the 

complete decoding output, and therefore increasing the frame size also increases the 

delay time. From Fig. 6.2 we are able to establish that a turbo code with a larger 

frame size has better BER performance compared to short ones. However, since the 

turbo code is a block code, it causes a time delay before getting the complete 

decoding output, and therefore increasing the frame size also increases the delay time. 

 

 
 

 

Fig. 6.2   Impact on performance for different information block lengths  

               (frame-size) used. 

 



 169 

6.2.3 Turbo Code Performance as a Function of the 

Number of Iterations 
We choose the turbo code (64,54,4000) as the basic reference parameter change, 

whereby the block length is kept constant at 4000, and the other basic conditions are 

kept the same while the number of decoding iterations is varied.  We perform 

numerous simulations with varying numbers of MAP decoding iterations.  We then 

draw graphs (Fig.6.3) to depict the relationships for the bit error rate under different 

values of the signal-to-noise ratio. 

 

 

 

Fig.6.3   Effect of varying the number of iterations, assuming a constant  

    information block length of 4000. 

 

From the graph of Fig.6.3 we establish that increasing the number of iterations leads 

to a performance improvement, however, this is at the expense of the added 

complexity. Definitely, increasing the number of iterations also leads to increased 

latency in the process of obtaining the decision output after completion of the 

decoding. This has also some impact on the power consumption considering the 

design at the implementation level. 
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6.2.4 Interleaver Design Considerations 
The performance of turbo codes is dependent on various factors like frame-size, 

number of iterations, selection of various types of encoders and use of different 

interleavers. 

 

 

 

Fig. 6.4  Effect of different RSC encoder configurations on performance of the 

     resulting turbo code. 

 

The effect of various RSC encoder configurations on the performance of the resulting 

turbo codes is demonstrated by plotting graphs of bit error probability (BER) against 

the signal-to-noise ratio (Eb/No) as depicted in Fig.6.4 for various encoder types and 

use of various interleavers. At low signal-to-noise ratios (Eb/No) the BER of turbo 

codes using random interleavers is lower than that obtained using structured 

interleavers. However, at high SNR it is in general the other way round by proper 

design. 

Serially concatenated systems tend to have larger free Euclidean distances than 

parallel concatenated systems, and hence lower error floors. Parallel concatenated 
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systems tend to do better in the waterfall (turbo cliff) region. Large interleavers are 

required to achieve precise turbo cliff behavior. 

The excellent BER performance of turbo codes is enhanced when the length of the 

interleaver is significantly increased. The interleaving block and its corresponding de-

interleaver in the decoder, does not much increase the complexity of the turbo 

scheme, but it does introduce a significant delay in the system, which in some cases 

can  be a strong drawback, depending on the application. 

 

 

 

Fig.6.5 Comparison of performance between the unpunctured and punctured 

turbo code generation configurations. 

 

The puncturing technique is used to improve the rate of a given turbo code. The 

puncturing selection process is performed by periodically eliminating one or more of 

the outputs generated by the constituent RSC encoders. Fig.6.5 illustrates the 

performance of turbo codes with unpunctured and punctured turbo code encoders of 

similar block lengths. The performance of the unpunctured configuration is better 
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than that of the punctured configuration, but the time delay for the decoding process 

is greater in the unpunctured case compared to the punctured situation. 

 

Fig. 6.6 reveals that for large code rates greater signal-to-noise ratios are required for 

both unpunctured and punctured scenarios whereas for the same block size the 

required signal-to-noise ratios using lower code rates are comparatively much lower. 

At low signal-to-noise ratios (Eb/No) the BER of turbo codes using random 

interleavers is lower than that obtained using structured interleavers. However at high 

SNR, it is in general the other way round by proper design. Through a combination of 

these two kinds of interleavers, this thesis proposes a new type of pseudo-random 

structured interleaver.   

 

 
 

Fig.6.6   Performance dependence on code rate, information block size, and     

   puncturing. 
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6.3 CHAPTER SUMMARY 
The performance of turbo coding systems is characterized by two distinct regions, 

namely, a turbo cliff (or waterfall) region and an error floor/flare region. Within the 

turbo cliff the bit error rate drops within a fraction of a dB of signal-to-noise ratio 

(SNR) to very low values, and the error floor/flare region is characterized by a slow 

decrease of the error rate with increasing SNR. The turbo cliff is dependent on the 

statistical behaviour of the individual component decoders, whereas the error 

floor/flare is determined by the free Euclidean distance asymptote [53]. Serially 

concatenated systems tend to have larger free Euclidean distances than parallel 

concatenated systems, and hence lower error floors. Parallel concatenated systems 

tend to do better in the waterfall (turbo cliff) region. Large interleavers are required to 

achieve precise turbo cliff behavior. Both serially concatenated and parallel 

concatenated codes can virtually achieve the Shannon bound, however, as in the limit 

performance is pushed to the Shannon limit, the ensuing complexity is overwhelming 

due to the number of iterations required. 

 

To obtain significant improvements in performance at high ob NE / , one needs to 

increase the length of the code, and hence, increasing the complexity of the system. 

Another disadvantage of using longer codes is the necessity to have large interleavers, 

resulting not only in increased implementation complexity but also in large delays. 

We note, however, that concatenation of two or more codes allows a significant 

reduction in complexity over single level codes that would provide the same overall 

code rate. Concatenation is an alternative way of improving the performance without 

increasing the length of the code. Concatenation can be viewed as a means to add, 

explicit diversity to the channel; the overall order of diversity for a given channel is 

the sum of the added explicit diversity and the implicit diversity introduced by the 

channel itself. The gain achieved using concatenated codes is proportional to the 

relative increase in diversity. For channels with small spread, concatenation is a 

powerful means of achieving small bit error rates at reasonable values of signal-to-

noise ratios.  

 

There are many factors that need to be considered in turbo code design. In the first 

instance, a trade-off between the BER and the number of iterations needs to be made, 
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e.g., more iterations will get lower BER, but the decoding delay is also longer. 

Secondly, the effect of the frame size on the BER also needs to be considered. 

Thirdly, the code rate is another factor that needs to be considered. A higher coding 

rate needs more bandwidth. The number of decoding iterations have the effect of 

improving the error performance at each additional iteration. 



 175 

CHAPTER SEVEN 

RESEARCH FINDINGS, OBSERVATIONS, 

CONCLUSIONS AND RECOMMENDATIONS 
 

7.1 RESEARCH FINDINGS 
 The contribution of this thesis is a detailed analysis of the critical design parameters 

of robust codes, and the demonstration of the key design issues involved and 

derivation of results of turbo codes developed by simulation using MATLAB. Error 

correction techniques play an important role in making wireless communications ever 

and ever more efficient and reliable. Emerging wireless technologies have already 

adopted some of the most robust channel error coding techniques. These include 

turbo codes and low density parity check codes. This thesis has demonstrated that the 

choice of the type of robust coding technique to use in a particular application 

depends on several factors, such as channel noise, multipath fading, and co-channel 

interference. We have established that the performance of a given turbo code will 

depend on the size of the input message or frame size, the number of decoding 

iterations, and the design and size of interleavers. 

7.2 OBSERVATIONS 
 

7.2.1 Merits of turbo codes compared to 

convolution codes for third generation      

wireless systems 
There are several reasons why turbo codes are especially suited for high-speed data 

services in wireless systems of the third-generation and above [38]. 

 At high speeds, sufficiently long blocks of data can be accumulated without 

causing substantial delay in the system. 

 Error-free data transmission is typically by an automatic repeat request (ARQ) 

protocol implemented in higher layers. As such the more appropriate figure of 

merit is the frame error rate (FER) rather than the bit error rate (BER). 

 As the information frame size increases from 512 to 3072, the frame error rate for 

turbo codes decreases sharply, at least in the waterfall region, while that of the 

convolution codes is essentially uniform across the frame and is a constant 

independent of frame size. Thus, for a given Eb/No, the expected number of bit 
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errors increases with frame size, and the frame error rate worsens. For turbo 

codes, however, the power of the code increases significantly as the frame size 

increases due to spectral thinning. This increase in power is more than sufficient 

to overcome the burden of protecting a larger frame of data. 

 Fast power control is employed in third-generation systems. Indeed, without any 

power control, the performance advantage of turbo codes over convolution codes 

decreases considerably. At relatively short frame sizes (e.g., 512 bits) the BER 

and FER performance of turbo codes and convolution codes are so similar that the 

extra complexity of the turbo decoder would not be worthwhile. However, use of 

fast power control restores the performance advantage of turbo codes to gains 

close to those achievable on the additive white Gaussian noise (AWGN) channel. 

 Turbo codes are mainly attractive for high-data-rate services due to the relatively 

long interleaver. Initially, the standard bodies limited turbo code only to high-

data-rate services. Results show that turbo codes still offer some modest gains 

with respect to convolution codes with a frame size as low as 100 bits. For 

extremely short interleavers, convolution codes outperform turbo codes. 

Theoretically, it is best to switch to convolution codes when the amount of data to 

be transmitted is small. However, this switching typically requires signaling; it 

incurs extra delay and overhead. Due to this reason, third generation systems 

allow turbo codes to be sued across almost all data rates. 

 The constraints on bandwidth, power, and time in many image communication 

systems prohibit transmission of uncompressed raw image data. Compressed 

image representation, however, is very sensitive to bit errors, which can severely 

degrade the quality of the image at the receiver. Therefore, application of channel 

coding is required before transmission of data over noisy and fading channels.  

Turbo codes have been tested [39] and proved to be quite reliable for robust 

transmission of compressed images over noisy and fading channels. Turbo codes 

are characterized by a large interleaver and their performance improves with 

increasing interleaver size. Thus, the large number of bits in an image 

representation makes turbo codes naturally suitable for image transmission. 
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7.2.2 Comparison of Low Density Parity Check   

Codes and turbo codes 
 Although implementation of LDPC codes has lagged that of other codes, notably the 

turbo code, the absence of encumbering software patents has made LDPC attractive 

to some, and LDPC codes are positioned to become a standard in the developing 

market for highly efficient data transmission methods.  LDPC codes are selected as 

the DVB-S2 standard over 7 other turbo code based candidates [47] because of their 

more efficient implementation as well as better performance- this is mainly because 

LDPC have a much lower latency compared to turbo codes although at higher BER 

rates compared to turbo codes. 

Turbo Codes are high-performance error-correcting codes that are good choices for 

limited-bandwidth, high-noise communications. They come closer to the Shannon 

limit than was originally thought possible, and the feedback technique they use has 

inspired new near-Shannon limit coding techniques.  The primary advantage of turbo 

codes is their ability to increase the usable bit rate of a signal without increasing 

transmission power, or similarly, maintaining the bit rate of a signal while decreasing 

the transmission power. Few coding schemes have ventured closer to the Shannon 

limit of usable performance compared to turbo codes. The disadvantages of turbo 

codes are high decoding complexity and high decoding latency. These properties 

make turbo codes suboptimal for low-latency, battery-limited voice applications, but 

make them just fine for high-latency applications like NASA satellites and earth-orbit 

satellite TV systems.   

Shannon observed that the longer the code word, the more difficult it was for noise to 

cause errors. By producing arbitrarily long code words, one can approach the 

Shannon limit. Long code words, however, have impractical space requirements, and 

the many bits transmitted per input bit reduce the useful transmit rate. Instead of 

producing a stream of bits from the signal, a turbo code receiver produces a 

likelihood measure for each bit. An iterative process of comparing parts of the code 

words turns an impractical code word space requirement into a tractable one that 

requires a number of steps. The two decoders converge on a solution, and report the 

result as a block of bits.  

http://en.wikipedia.org/wiki/Turbo_code
http://en.wikipedia.org/wiki/Software_patent
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The impact of turbo codes extends beyond just the high-performance codes 

themselves. Their unexpected creation showed information theorists that the creation 

of higher-performance error correction codes was indeed possible, and has inspired 

new coding techniques to deal with multipath propagation. In addition, they have 

inspired low-density parity check (LDPC) codes, which come even closer to the 

Shannon limit and are unencumbered by patents. 

7.3 CONCLUSIONS  

In emerging digital wireless communication systems, the purpose of channel coding 

is to add redundancy to the binary data stream to combat the effect of signal 

degradation of the channel. Signal degradation is usually due to noise and fading 

phenomena. Ideally, channel codes should meet the following requirements: 

 Channel codes should be high rate to maximize data throughput. 

 Channel codes should have good bit error rate (BER) performance at the desired 

signal-to-noise ratios (SNR) to minimize the energy needed for transmission. 

 Channel codes should have low encoder/decoder complexity to limit the size and 

cost of the transceivers. 

 Channel codes should only introduce minimal delays, especially in voice 

transmission, so that no degradation in signal quality is detectable.  [48] 

 

These requirements are very difficult to obtain simultaneously, because excellent 

performance in one requirement usually comes at a price of reduced performance in 

another. However, for mobile cellular voice and data communications, it is desirable 

that all these requirements are met, which makes design of mobile cellular 

communication systems for both voice and data, quite a challenging task. There are 

two categories of channel codes which qualify to be regarded as robust codes because 

of their salient features and current applicability and reliability levels. These include 

turbo codes and low density parity check codes. Our comprehensive research is here 

limited to turbo codes only for obvious reasons.  

 

We have established that various parameters affect the performance of turbo codes. 

These parameters include: 

 The size of the input message or frame size. 

 The number of decoding iterations. 
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 The design and size of the interleaver used. 

 

Our results are presented for the cases of either additive white Gaussian noise 

(AWGN) or Rayleigh flat fading channels. Normally, a code designed for an AWGN 

channel only, has to be modified by combining it with some interleaving in order to 

make it suitable for fading channels. Thus, the criterion for the code design has to 

change to provide for fading diversity [18]. Code designs for fading channels 

combine block and Convolution codes with interleaving, and modify the coding 

process to provide for maximum fading diversity. 

 

Simulation results show that turbo codes are powerful error correcting codes under 

noisy and fading environments. However, there are many factors which need to be 

considered in the turbo code design process. First, a tradeoff between BER and the 

number of iterations need to be made, e.g., more iterations lead to lower BER, while the 

decoding delay gets longer. Secondly, the effect of the frame size on the BER also 

needs to be considered. Although the turbo code with larger frame size has a better 

performance, the output delay is longer. Thirdly, the code rate is another factor to be 

considered.  

A higher coding rate leads to greater bandwidth requirements.  

Simulation results reveal that turbo code performance increases with increasing 

numbers of iterations over the AWGN channel and the Rayleigh channel. The 

improvement in performance with increased iterations, however, comes at the 

expense of complexity and time delay (latency). The higher the number of iterations 

involved the higher the complexity.  From the error performance results, it is evident 

that turbo codes are quite suitable for the emerging wireless communications 

applications taking into account of the fore-mentioned requirements.  

Turbo codes introduced in 1993 and low-density parity-check (LDPC) codes, 

introduced by Gallager in the sixties and revisited after turbo codes were invented, are 

the most exciting and important development in coding theory in many years. 

Researchers around the world have been able to extend the basic idea to other forms 

of code concatenations, with various applications for transmission over fading 

channels, band-limited satellite channels, and channels with inter-symbol 

interference. 
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After slightly more than a decade from their date of discovery, turbo and LDPC codes 

have been accepted as robust coding standards for 3G wireless communications 

systems, like CDMA2000 and UMTS, for satellite and deep space applications as the 

new Consultative Committee for Space Data Systems (CCSDS) telemetry channel 

coding standard, for the new digital video broadcasting by satellite DVBS-2, and 

many others. Both classes of codes rely on the application of soft, decentralized 

decoding algorithms, like the BCJR for turbo codes and the “message passing” for 

LDPC codes. 

7.4 RECOMMENDATIONS 
The major disadvantage pertaining to additional complexity and delay of turbo codes 

has to be dealt with in order to achieve desirable objectives through better hardware 

and software design approaches. 

 

From the error performance analysis and results, it is evident that turbo codes are quite 

suitable for the emerging wireless communications technologies and applications, 

assuming that the disadvantages mentioned above could be minimized with other 

developments in hardware design.   

 

Random coding theory states that almost all randomly designed codes are good, as 

long as they are sufficiently long [55].  However, just a few of them in terms of the 

parity check bits make decoding simple to implement. They were for some period in 

the 1960s, and even in the 1980s still rather too complex to implement. The early 

1990s saw the discovery of turbo codes by Berrou, et al whose performance is built 

on large random interleavers, and iterative decoding. Recently, Neal and McKay 

“rediscovered” the low density parity check codes employing iterative decoding to 

achieve turbo-like performance [55]. To design a good LDPC code, efficient use of 

modern random access memory (RAM) architecture is the key. Design alternatives of 

LDPC codes that have sufficient structure to allow efficient read/write operations, 

while retaining sufficient “randomness” to retain coding gain are still needed. LDPC 

codes are preferred to turbo codes in some applications because of their more 

efficient implementation as well as better performance. 
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It is quite clear that simulation tools while difficult to design, offer cheaper and fairly 

good alternatives to electrical laboratories which involve high capital costs and often 

requiring connecting together several hardware components to form a complete 

system. 

7.4.1 Why LDPC is a strong candidate for Emerging 

Wireless Systems 
Since emerging wireless systems typically require higher data throughput in a given 

bandwidth, this implies that: 

 High rate forward-error correction (FEC) systems with higher order modulation 

types (e.g. CDMA2000, EVDV, and HSDPA) will be required. 

 Applications requiring high speed, by default should permit use of long blocks. 

[55]. 

Since turbo codes tend to lose performance at high code rates due to excessive 

puncturing, and turbo trellis codes become rather complex to implement for higher 

order modulation, the LDPC code appears to be a strong candidate for next generation 

wireless systems applications. It is envisaged that relative gain of LDPC codes over 

3G turbo codes in the AWGN and fading channels will also be preserved when power 

control is applied. 

Low-density parity check codes (LDPCC) are favoured over turbo codes for large 

bock sizes due to their superior error correction performance. 

7.4.2 Call for Additional Design Criterion 
The performance of a turbo code is dependent mainly on two properties: its distance 

spectrum and its suitability to be iteratively decoded. Both of these properties are 

influenced by the choice of the interleaver used in the turbo encoder. Turbo codes are 

however decoded iteratively, which is suboptimal to maximum likelihood decoding. 

This calls for an additional design criterion which can minimize performance 

deterioration due to iterative decoding. 

Both implementation complexity and latency associated with the decoding process, are 

some of the major bottlenecks which need further research to improve overall 

performance of turbo codes. 
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7.4.3 Future Research endeavors 
The future research directions proposed here for the furtherance of robust code 

performance research are as follows: 

 Examining the BER performance of a more realistic fading channel model, such 

as the Jake‟s model [21]. Our BER performance simulations have been limited to 

AWGN and Rayleigh models. 

 Investigating the use of other modulation techniques or signal constellations. Our 

research has been limited to BPSK modulation systems and 8 signal 

constellations. 

 Performing simulations to obtain the BER performance curves for BERs below 

10
-5

 in order to study the “error floor” area of the BER curves. It is suspected that 

the performance in this area of the BER curves might oscillate slightly when the 

symbol size is increased. 

 The literature review has revealed several fundamental channel code performance 

bounds and capacity limits at various levels, and the need for considering several 

design alternatives. Examples of these performance bounds and limits include: 

- The Shannon capacity limit and bound 

- The Singelton bound 

- The Gilbert-Varshamov bound, and  

- The Hamming bound. 

There is a need for clarifying on the convergence or divergence of these concepts to a 

similar point and their comparative advantages with reference to established channel 

code performance metrics. 

                       ======================================== 
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APPENDICES 

 

APPENDIX A 
 

Simulation Results of Turbo Code Performance  
  

 

      Same Block Length = 512 bits;                             Same code rate r = 1/2 

              Unpunctured      Code 

                         t8k512r12               

                     Punctured  Code 

                        t8k512r12dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

             0.5          1.03e-001              0.5     1.47e-001 

             0.75          6.51e-002              0.75     9.70e-002 

             1.00          2.78e-002              1.00     4.27e-002 

             1.25          8.65e-003              1.25     1.67e-002 

             1.50         1.77e-003              1.50     3.40e-003 

             1.75         2.03e-004              1.75     4.43e-004 

             2.00        1.69e-005              2.00     4.24e-005 

 

            2.25 

 

              -- 

            2.25     1.60e-006 

 

          Time elapsed  =  376.250  sec. 

 

 

             Time elapsed  =  475.172  sec. 
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          Same Block Length = 1024 bits;                             Same code rate r = 1/2 

 

                   Unpunctured      Code 

                         t8k1024r12           

 

                     Punctured  Code 

                        t8k1024r12dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

             0.5            1.10e-001              0.5      1.55e-001 

             0.75            6.01e-002              0.75      9.17e-002 

             1.00            1.97e-002              1.00      3.08e-002 

             1.25            2.66e-003              1.25      4.58e-003 

             1.50           1.61e-004          1.50       2.92e-004 

 

          1.75 

          2.99e-006  

         1.75 

 

       5.10e-006 

 

             Time elapsed  =    298.797sec. 

 

 

          Time elapsed  =  459.828  sec. 

 

 

 

 

 

 

          Same Block Length = 1504 bits;                             Same code rate r = 1/2 

 

                   Unpunctured      Code 

                         t8k1504r12           

 

                     Punctured  Code 

                        t8k1504r12dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

             0.5         1.09e-001              0.5     1.48e-001 

 

             0.75         5.68e-002 

 

             0.75     8.80e-002 

             1.00      1.18e-002              1.00  1.80e-002 

             1.25      7.69e-004              1.25  1.34e-003 

             1.50      1.34e-005              1.50  2.34e-005 

             1.75      1.91e-007              1.75  2.19e-006 
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Same Block Length = 1504 bits;                             Same code rate r = 1/3 

 

            Unpunctured      Code 

                   t8k1504r13           

 

                     Punctured  Code 

                        t8k1504r13dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

         

           0.0 

 

        

       1.04e-001 

 

           

          0.0 

 

       

       1.05e-001 

          0.25 

     

       3.06e-002           0.25 

     

       5.29e-002 

 

             

             0.5 

 

       3.14e-002 

             

             0.5 

 

       1.76e-002 

 

             0.75     8.48e-005              0.75     4.20e-003 

             1.00        3.93e-007 

 

             1.00        5.74e-004 

 

             1.25               -              1.25        4.57e-005 

 

           Time elapsed = 3806.422 sec. 

 

 

             Time elapsed =  423.453 sec. 

 

 

Same Block Length = 1504 bits;                             Same code rate r = 1/3 

 

            Unpunctured      Code 

                   t8k1504r13           

 

                     Punctured  Code 

                        t8k1504r13dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

          0.0 

 

       1.04e-001 

 

          0.0 

 

       1.05e-001 

          0.25 

     

       3.06e-002           0.25 

     

       5.29e-002 

 

             

             0.5 

 

       3.14e-002 

             

             0.5 

 

       1.76e-002 

 

             0.75     8.48e-005              0.75     4.20e-003 

             1.00        3.93e-007 

 

             1.00        5.74e-004 
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             1.25               -   

 

           Time elapsed = 3806.422 sec. 

 

 

             Time elapsed =  423.453 sec. 

 

 

 

 

Same Block Length = 1024 bits;                             Same code rate r = 2/3 

 

 

                Unpunctured      Code 

                          t8k1024r23          

 

                      Punctured  Code 

                        t8k1024r23dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

 

1.50 

 

 

4.73e-002 

 

 

1.50 

 

 

6.72e-002 

 

 

1.75 

 

 

1.74e-002 

 

1.75 

 

 

2.65e-002 

 

2.00 

 

 

3.72e-003 

 

2.00 

 

 

4.86e-003 

 

2.25 

 

 

4.41e-004 

 

2.25 

 

 

5.20e-004 

 

2.50 

 

 

2.54e-005 

 

 

2.50 

 

 

1.98e-005 

 

 

2.75 

 

 

1.23e-006 

 

 

2.75 

 

 

 

 

 

  

           Time elapsed = 2671.593sec. 

 

 

 

 

               Time elapsed = 4988.312sec. 
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          Same Block Length = 1024bits;                             Same code rate r = 4/5 

 

                   Unpunctured      Code 

                         t8k1024r45           

 

                     Punctured  Code 

                        t8k1024r45dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

             2.50         2.00e-002              2.50     4.10e-002 

 

             2.75         7.23e-003 

 

             2.75     1.51e-002 

             3.00      1.64e-003              3.00  2.95e-003 

             3.25      2.23e-004              3.25  3.41e-004 

             3.50      2.41e-005              3.50  2.12e-005 

             3.75      2.86e-006              3.75  7.63e-007 

 

Time elapsed   =  6876.078 sec.                       Time elapsed  =   3668.563 sec. 

 

 

 

 

 

          Same Block Length = 1504bits;                             Same code rate r = 8/9 

 

                   Unpunctured      Code 

                         t8k1504r89           

 

                     Punctured  Code 

                        t8k1504r89dp 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

       Eb/No(dB)           Bit Error 

          Rate(BER) 

             3.00         2.77e-002              3.00     7.23e-002 

 

             3.25         1.77e-003 

 

             3.25     5.80e-002 

             3.50      6.69e-003              3.50  3.43e-002 

             3.75      2.02e-003              3.75  1.29e-002 

             4.00      4.10e-004              4.00  2.28e-003 

             4.25      4.72e-005              4.25  2.37e-004 

             4.50      6.55e-006              4.50 1.09e-005 

             4.75      1.25e-006                 

             4.75 

 

        - 
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Time elapsed   =  7758.360 sec. 

 

 

Time elapsed  =   2587.343sec. 

 

 

Varying the number of iterations, while the block length is kept constant at 4000 bits, 

and other parameters are assumed fixed: 

 

 A.    No. of iterations = 1 

Eb/No(dB)     0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Bit Error 

Rate(BER) 

0.1316 0.1519 0.1298 0.1081 0.0926 0.0719 0.0663 0.0503 

 

B.    No. of iterations = 4   

Eb/No(dB) 0 0.2 0.4 0.6 0.8 1.0 1.2 

Bit Error 

Rate(BER) 

0.1616 0.1198 0.0602 0.0321 0.0106 0.0011 9.914e-4 

 

C.    No. of iterations = 8 

Eb/No(dB) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Bit Error 

Rate(BER) 

0.0783 0.0650 0.0453 0.0173 0.0068 0.0027 6.1713e-

4 

2.6687e-

4 

 

 

1.8 2.0 

2.1021e-5 3.7793e-6 

 

Comparison of results assuming different information block lengths are used and 

other basic conditions remain the same, i.e., No. of iterations = 8. 

 

A. Length of block: Block_Length = 1000 bits 

Eb/No(dB) 0 0.2 0.4 0.6 0.8 1.0 1.2 

Bit Error 

Rate(BER) 

0.1225 0.0942 0.0729 0.0208 0.0034 0.0014 2.7042e-4 

 

B.  Length of block: Block_Length = 4000 bits 

Eb/No(dB) 0 0.2 0.4 0.6 0.8 1.0 

Bit Error 

Rate(BER) 

0.0783 0.0650 0.0453 0.0173 0.0044 0.0017 

 

 

1.2 1.4 1.8 2.0 

6.1713e-4 2.6687e-4 6.1021e-5 3.7793e-6 

 

 

C.  Length of block: Block_Length = 8000 bits 

Eb/No(dB) 0 0.2 0.4 0.6 0.8 1.0 

Bit Error 

Rate(BER) 

0.1242 0.0997 0.0491 0.0059 3.1577e-6 1.0004e-6 
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APPENDIX   B     
 

 

MATLAB CODE FOR PLOTTING TURBO-CODE 

PERFORMANCE GRAPHS 
 
EbNo = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0]; 

BER  = [0.1303 0.0964 0.0583 0.0064 1.1675e-4 2.3166e-6 6.5346e-7 5.785e-7 2.2556e-7]; 

semilogy(EbNo, BER,'--r*') 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

 

 
EbNo1 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0]; 

BER1  = [0.1303 0.0964 0.0583 0.0064 1.1675e-4 2.3166e-6 6.5346e-7 5.785e-7 2.2556e-7]; 

EbNo2 = 0:0.2:1.4; 
EbNo3 = 0:0.2:1.2; 

BER2 = [0.1316 0.1519 0.1098 0.1081 0.0926 0.0719 0.0663 0.0503]; 

BER3 = [0.1616 0.1298 0.0602 0.0321 0.0106 0.0011 2.6551e-4]; 

semilogy(EbNo2,BER2,'-b',EbNo3,BER3,'-g',EbNo1,BER1,'--r*') 

 

title('\fontname{Ariel}Performance Comparison of Different Iteration Times.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('nIterate=1','nIterate=4','nIterate=8') 

 

 
EbNo1 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0]; 

BER1  = [0.1126 0.0931 0.0485 0.0210 0.0086 0.002 8.5064e-5 9.8758e-6 4.0158e-6 3.7793e-6]; 

EbNo2 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 2.0]; 

BER2  = [0.0783 0.0650 0.0453 0.0173 0.0055 0.0017 6.1713e-4 2.6687e-4 6.1021e-5 1.6653e-5]; 

EbNo3 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0]; 

BER3  = [0.1303 0.0964 0.0583 0.0064 1.1675e-4 2.3166e-6 6.5346e-7 5.785e-7 2.2556e-7]; 

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.', EbNo3, BER3,'-gd') 

title('\fontname{Ariel}Comparison of Performance of Different RSC Encoder 

Configurations.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('(64,6)','(44,54)','(64,54)') 
 

EbNo1 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0]; 

BER1  = [0.1126 0.0931 0.0485 0.0210 0.0086 0.002 8.5064e-5 9.8758e-6 4.0158e-6 3.7793e-6]; 

EbNo2 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 2.0]; 

BER2  = [0.0783 0.0650 0.0453 0.0173 0.0055 0.0017 6.1713e-4 2.6687e-4 6.1021e-5 1.6653e-5]; 

EbNo3 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0]; 

BER3  = [0.1303 0.0964 0.0583 0.0064 1.1675e-4 2.3166e-6 6.5346e-7 5.785e-7 2.2556e-7]; 

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.', EbNo3, BER3,'-gd') 

title('\fontname{Ariel}Comparison of Performance of Different RSC Encoder 

Configurations.','FontSize',14); 

xlabel('Eb/No(dB)') 
ylabel('Bit Error Probability') 

legend('(64,6)','(44,54)','(64,54)') 

 
EbNo1 = [0.5 0.75 1.00 1.25 1.50 1.75 2.00]; 

BER1  = [1.03e-001 6.51e-002 2.78e-002 8.65e-003 1.77e-003 2.03e-004 1.69e-005]; 

EbNo2 = [0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25]; 

BER2  = [1.47e-001 9.70e-002 4.27e-002 1.67e-002 3.40e-003 4.43e-004  4.24e-005 1.60e-006]; 
EbNo3 = [0.5 0.75 1.00 1.25 1.50]; 
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BER3  = [1.10e-001 6.01e-002 1.97e-002 2.66e-003 1.61e-004]; 

EbNo4 = [0.5 0.75 1.00 1.25 1.50]; 

BER4  = [1.55e-001 9.17e-002 3.08e-002 4.58e-003 2.92e-004]; 

EbNo5 = [0.5 0.75 1.00 1.25 1.50]; 

BER5 = [1.48e-001 8.80e-002 1.80e-002 1.34e-003 2.34e-005]; 

EbNo6 = [0.5 0.75 1.00 1.25 1.50 1.75]; 
BER6  = [1.09e-001 5.68e-002 1.18e-002 7.69e-004 1.34e-005 1.91e-007]; 

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.',EbNo3, BER3,'-g+',EbNo4,BER4,':r*',EbNo6,BER6,'-

.g.',EbNo5,BER5,'-.md') 

title('\fontname{Ariel}Comparison of Unpunctured and Punctured Configurations.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('t8k512r12','t8k512r12dp','t8k1024r12','t8k1024r12dp','t8k1504r12','t8k1504r12dp') 

 

EbNo1 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4]; 

BER1  = [0.1316 0.1519 0.1298 0.1081 0.0926 0.0719 0.0663 0.0503]; %No. of iterations = 1 

EbNo2 = [0 0.2 0.4 0.6 0.8 1.0 1.2]; 

BER2  = [0.1616 0.1198 0.0602 0.0321 0.0106 0.00411 9.914e-4];  % No. of iterations = 4 
EbNo3 = [0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 2.0]; 

BER3  = [0.0783 0.0650 0.0453 0.0173 0.0068 0.0027 6.1713e-4 2.6687e-4 2.1021e-5 3.7793e-6]; % 

No. of iterations = 8 

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.',EbNo3, BER3,'-g+') 

title('\fontname{Ariel}Comparison of varying the number of iterations.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('nIterations = 1','nIterations=4','nIterations=8') 

 

EbNo1 = [0.00 0.25 0.50 0.75 1.00]; 

BER1  = [1.04e-001 3.06e-002 3.14e-003 8.48e-005 3.93e-007]; 
EbNo2 = [0.00 0.25 0.50 0.75 1.00 1.25]; 

BER2  = [1.05e-001 5.29e-002 1.76e-002 4.20e-003 5.74e-004 4.57e-005]; 

EbNo3 = [3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00]; 

BER3  = [2.77e-002 1.77e-002 6.69e-003 2.02e-003 4.10e-004 4.72e-005 6.55e-006 1.25e-006 3.37e-

007]; 

EbNo4 = [3.00 3.25 3.50 3.75 4.00 4.25 4.50]; 

BER4  = [7.23e-002 5.80e-002 3.43e-002 1.29e-002 2.28e-003 2.37e-004 1.09e-005]; 

EbNo5 = [2.50 2.75 3.00 3.25 3.50 3.75]; 

BER5 = [2.00e-002 7.23e-003 1.64e-003 2.23e-004 2.41e-005 2.86e-006 ]; 

EbNo6 = [2.50 2.75 3.00 3.25 3.50 3.75]; 

BER6  = [4.10e-002 1.51e-002 2.95e-003 3.41e-004 2.12e-005 7.63e-007]; 

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.',EbNo3, BER3,'-g+',EbNo4,BER4,':r*',EbNo6,BER6,'-
.g.',EbNo5,BER5,'-.md') 

title('\fontname{Ariel}Comparison of Turbo Codes of Different Code Rates and Block 

size.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('t8k1504r13','t8k1504r13dp','t8k1504r89','t8k1504r89dp','t8k1024r45','t8k1024r45dp') 

 

EbNo1 = [3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75]; 

BER1  = [6.94e-002 5.65e-002 3.40e-002 1.34e-002 3.91e-003 5.66e-004 7.06e-005 6.62e-006]; 

EbNo2 = [3.00 3.25 3.50 3.75 4.00 4.25 4.50]; 

BER2  = [7.23e-002 5.80e-002 3.43e-002 1.29e-002 2.28e-003 2.37e-004 1.09e-005]; 
  

semilogy(EbNo1,BER1,'--b*',EbNo2,BER2,':k.') 

title('\fontname{Ariel}Turbo codes of different block sizes but having same code rate.','FontSize',14); 

xlabel('Eb/No(dB)') 

ylabel('Bit Error Probability') 

legend('t8k1024r89dp','t8k1504r89dp') 
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APPENDIX   C     
 

 

MATLAB CODE EXAMPLE FOR RADIO PROPAGATION 

GRAPHIC USER INTERFACE (GUI) 
 

Free-Space Power Loss Model Matlab Code 
 

function varargout = free_space_edit(varargin) 

% FREE_SPACE_EDIT M-file for free_space_edit.fig 

%      FREE_SPACE_EDIT, by itself, creates a new FREE_SPACE_EDIT or raises 

the existing 

%      singleton*. 

% 

%      H = FREE_SPACE_EDIT returns the handle to a new FREE_SPACE_EDIT or 

the handle to 

%      the existing singleton*. 

% 

%      FREE_SPACE_EDIT('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in FREE_SPACE_EDIT.M with the given input 

arguments. 

% 

%      FREE_SPACE_EDIT('Property','Value',...) creates a new FREE_SPACE_EDIT 

or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before free_space_edit_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to free_space_edit_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

 

% Edit the above text to modify the response to help free_space_edit 

 

% Last Modified by GUIDE v2.5 27-Apr-2007 18:32:24 

 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @free_space_edit_OpeningFcn, ... 

                   'gui_OutputFcn',  @free_space_edit_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 
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                   'gui_Callback',   []); 

if nargin & isstr(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

 

% --- Executes just before free_space_edit is made visible. 

function free_space_edit_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to free_space_edit (see VARARGIN) 

 

% Choose default command line output for free_space_edit 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 

 

% UIWAIT makes free_space_edit wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

% --- Outputs from this function are returned to the command line. 

function varargout = free_space_edit_OutputFcn(hObject, eventdata, handles) 

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

% --- Executes during object creation, after setting all properties. 

function d_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to d_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 
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    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

 

function d_input_Callback(hObject, eventdata, handles) 

% hObject    handle to d_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of d_input as text 

%        str2double(get(hObject,'String')) returns contents of d_input as a double 

 

% --- Executes during object creation, after setting all properties. 

function f_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to f_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function f_input_Callback(hObject, eventdata, handles) 

% hObject    handle to f_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of f_input as text 

%        str2double(get(hObject,'String')) returns contents of f_input as a double 

 

f_input = str2double(get(hObject,'String')); 

if isnan(f_input) 

    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

 

data = getappdata(gcbf,'user_data'); 

data.f_input = f_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes during object creation, after setting all properties. 

function p_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to p_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function p_input_Callback(hObject, eventdata, handles) 

% hObject    handle to p_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of p_input as text 

%        str2double(get(hObject,'String')) returns contents of p_input as a double 

 

p_input = str2double(get(hObject,'String')); 

if isnan(p_input) 

    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

 

data = getappdata(gcbf,'user_data'); 

data.p_input = p_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes during object creation, after setting all properties. 

function tg_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to tg_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function tg_input_Callback(hObject, eventdata, handles) 

% hObject    handle to tg_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of tg_input as text 

%        str2double(get(hObject,'String')) returns contents of tg_input as a double 

 

tg_input = str2double(get(hObject,'String')); 

if isnan(tg_input) 
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    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

data = getappdata(gcbf,'user_data'); 

data.tg_input = tg_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes during object creation, after setting all properties. 

function rg_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to rg_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function rg_input_Callback(hObject, eventdata, handles) 

% hObject    handle to rg_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of rg_input as text 

%        str2double(get(hObject,'String')) returns contents of rg_input as a double 

 

rg_input = str2double(get(hObject,'String')); 

if isnan(rg_input) 

    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

 

data = getappdata(gcbf,'user_data'); 

data.rg_input = rg_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes during object creation, after setting all properties. 

function l_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to l_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 
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    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function l_input_Callback(hObject, eventdata, handles) 

% hObject    handle to l_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of l_input as text 

%        str2double(get(hObject,'String')) returns contents of l_input as a double 

 

l_input = str2double(get(hObject,'String')); 

if isnan(l_input) 

    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

 

data = getappdata(gcbf,'user_data'); 

data.l_input = l_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes on button press in plot_button. 

function plot_button_Callback(hObject, eventdata, handles) 

% hObject    handle to plot_button (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Change inputs from strings to double values 

 

d = eval(get(handles.d_input,'String')); 

f = str2double(get(handles.f_input,'String')); % F1 

f1 = str2double(get(handles.f1_input,'String')); % F2 

P = str2double(get(handles.p_input,'String')); 

tg_db = str2double(get(handles.tg_input,'String')); 

rg_db = str2double(get(handles.rg_input,'String')); 

L = str2double(get(handles.l_input,'String')); 

 

% Wait while the processing takes place 

 

h = waitbar(0,'Please Wait...'); 

for i = 1:800, % Computation being done here  

waitbar(i/100) 

end 

close(h)  

 

% Change gains from dB to watts 

 

tg = (10^(tg_db/10)); 

rg = (10^(rg_db/10)); 
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M1 = (300/f); % M1 is the wavelength of F1 

M2 = (300/f1); % M2 is wavelength of F2 

 

N1 = (P*tg*rg*(M1.^2)); % Numerator of the FRIIS equation for F1 

N2 = (P*tg*rg*(M2.^2)); % Numerator of the FRIIS equation for F2 

S = (1000000*(16*(d.^2)*(pi.^2)*L)); % Denominator of the FRIIS equation 

Pr1 = (N1./S); % Received signal in watts 

Pr2 = (N2./S); % Received signal in watts 

Pr_dB1 = (10*(log10(Pr1))); % Converts the signal strength to dB for F1 

Pr_dB2 = (10*(log10(Pr2))); % Converts the signal strength to dB for F2 

 

Q1 = (32.44 + (20*log10(f)) + (20*log10(d))-(10*log10(tg))-(10*log10(rg))); % 

Computes the path loss in dB for F1 

Q2 = (32.44 + (20*log10(f1)) + (20*log10(d))-(10*log10(tg))-(10*log10(rg))); % 

Computes the path loss in dB for F2 

 

% Plot the Curves - specfy axes 

 

axes(handles.power_axes) 

plot(d,Pr_dB1,'b',d,Pr_dB2,'r') 

xlabel('Distance(KM)') 

ylabel('Received Power(dB)') 

legend('F1 MHz','F2 MHz') 

title('Signal Strength At Any Distance') 

grid on 

 

axes(handles.loss_axes) 

plot(d,Q1,'b',d,Q2,'r') 

xlabel('Distance(KM)') 

ylabel('Path Loss(dB)') 

legend('F1 MHz','F2 MHz',4) 

title('Free Space Path Loss At Any Distance') 

grid on 

 

% Calculation Section 

 

D = handles.X_INPUT; 

 

val = get(handles.popupmenu1,'Value'); 

 

if val==1 

 

 PL = (32.44 + (20*log10(f)) + (20*log10(D))-(10*log10(tg))-(10*log10(rg))); 

% PL gives the path loss at a distance d 

 

Y = (P*tg*rg*(M1.^2)); % Numerator of the FRIIS equation 

Z = 1000000*(16*(D.^2)*(pi.^2)*L); % Denominator of the FRIIS equation, L==1 

RP = 10*(log10(Y./Z)); % Converts the received signal strength to dB    

     

else 



 204 

 

PL = (32.44 + (20*log10(f1)) + (20*log10(D))-(10*log10(tg))-(10*log10(rg))); 

% PL gives the path loss at a distance d 

Y = (P*tg*rg*(M2.^2)); % Numerator of the FRIIS equation 

Z = 1000000*(16*(D.^2)*(pi.^2)*L); % Denominator of the FRIIS equation, L==1 

RP = 10*(log10(Y./Z)); % Converts the received signal strength to dB 

 

end 

 

ans1 = round(100*RP)/100; 

ans2 = round(100*PL)/100; 

 

set(handles.power,'String',ans1); 

set(handles.loss,'String',ans2); 

 

 

% --- Executes on button press in reset_button. 

function reset_button_Callback(hObject, eventdata, handles) 

% hObject    handle to reset_button (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

initialize_gui(gcbf, handles); 

 

function initialize_gui(fig_handle, handles) 

data.f_input = 900; 

data.p_input = 10.0; 

data.tg_input = 0.0; 

data.rg_input = 0.0; 

data.l_input = 1.0; 

data.f1_input = 1800; 

setappdata(fig_handle,'user_data',data); 

 

set(handles.f_input,'String',data.f_input); 

set(handles.p_input,'String', data.p_input); 

set(handles.tg_input,'String',data.tg_input); 

set(handles.rg_input,'String',data.rg_input); 

set(handles.l_input,'String',data.l_input); 

set(handles.f1_input,'String',data.f1_input); 

 

% --- Executes on button press in close_button. 

function close_button_Callback(hObject, eventdata, handles) 

% hObject    handle to close_button (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

selection = questdlg('Are You Sure You Want To Close This Window?',... 

                     'Close Request Function',... 

                     'Yes','No','Yes'); 

switch selection, 
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   case 'Yes', 

     delete(gcf) 

   case 'No' 

     return 

end 

 

 

% --- Executes during object creation, after setting all properties. 

function X_INPUT_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to X_INPUT (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function X_INPUT_Callback(hObject, eventdata, handles) 

% hObject    handle to X_INPUT (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of X_INPUT as text 

%        str2double(get(hObject,'String')) returns contents of X_INPUT as a double 

 

 

NewStrVal = get(hObject,'String'); 

NewVal = str2double(NewStrVal); 

handles.X_INPUT = NewVal; 

guidata(hObject,handles); 

 

% --- Executes during object creation, after setting all properties. 

function f1_input_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to f1_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function f1_input_Callback(hObject, eventdata, handles) 
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% hObject    handle to f1_input (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of f1_input as text 

%        str2double(get(hObject,'String')) returns contents of f1_input as a double 

 

f1_input = str2double(get(hObject,'String')); 

if isnan(f1_input) 

    set(hObject,'String',0); 

    errordlg('Input must be a Number','Error!'); 

end 

 

data = getappdata(gcbf,'user_data'); 

data.f1_input = f1_input; 

setappdata(gcbf,'user_data',data); 

 

% --- Executes during object creation, after setting all properties. 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

% --- Executes on selection change in popupmenu1. 

function popupmenu1_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu1 

 

val = get(handles.popupmenu1,'Value'); 

 

% -------------------------------------------------------------------- 

function file_Callback(hObject, eventdata, handles) 

% hObject    handle to file (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function Untitled_4_Callback(hObject, eventdata, handles) 

% hObject    handle to Untitled_4 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function userguide_Callback(hObject, eventdata, handles) 

% hObject    handle to userguide (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function about_Callback(hObject, eventdata, handles) 

% hObject    handle to about (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function Untitled_7_Callback(hObject, eventdata, handles) 

% hObject    handle to Untitled_7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function space1_Callback(hObject, eventdata, handles) 

% hObject    handle to space1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function space2_Callback(hObject, eventdata, handles) 

% hObject    handle to space2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function space3_Callback(hObject, eventdata, handles) 

% hObject    handle to space3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function space4_Callback(hObject, eventdata, handles) 

% hObject    handle to space4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% -------------------------------------------------------------------- 

function open_Callback(hObject, eventdata, handles) 

% hObject    handle to open (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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% -------------------------------------------------------------------- 

function new_Callback(hObject, eventdata, handles) 

% hObject    handle to new (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

 

 

 

 

 

 

 

 

 


