# MIT iLabs: Laboratories Without Frontiers

Jesús A. del Alamo MIT



**4th Annual MIT LINC International Symposium:** Technology-Enabled Education: A Catalyst for Positive Change

October 27-30, 2007

Sponsorship: Carnegie Corp. of New York, NSF, Microsoft Corp.

# **Motivation to iLabs**

There is enormous educational value in hands-on laboratory experiences

But, conventional labs...
\* ... are expensive and have complex logistics
\* ... can't easily be shared

 iLabs: real laboratories that are accessed through the Internet from anywhere at any time





Dynamic signal analyzer (EECS, deployed 2004)



Microelectronics device characterization (EECS, deployed 1998)

## iLabs at MIT





ELVIS (EECS, deployed 2006)

Polymer crystallization (Chem. E., deployed 2003)



Shake table (Civil Eng., deployed 2004)



Heat exchanger (Chem. E., deployed 2001)

#### **Microelectronics Device Characterization iLab**



👙 View Data

👙 SMU1 Configuration

X

# **Typical Assignment**

Transistor characterization project:

- Measure transistor characteristics
- Extract transistor parameters
- Compare measurements with class models



Also, do whatever else you want with the transistor...

## iLab Capacity



## **iLab Capacity**



System capacity: > 2,000 users/week > 15,000 experiments/week



## iLab: the Opportunities

- Order of magnitude more laboratories available to our students
- Unique labs:
  - Unusual locations, expensive equipment, rare materials
- Rich pedagogical experiences:
  - More lab time available to students
  - GUI to lab integrating graphing, simulation, collaboration, tutoring
- Worldwide communities of scholars created around labs sharing content

## iLab: the Challenges

Developing an iLab from scratch is a lot of work!
\* Great attention needed to user scalability
\* Needs to be done by domain specialist
Managing a broadly shared iLab is also a lot of work!
\* Disincentive for owner to share lab

Key challenge: iLab Scalability

## The MIT iLab Architecture



#### Three tier architecture:

- Lab Server: brings experimental setup online
- Client: GUI to lab
- Service Broker:
  - Serves GUI, mediates between Client and Lab Server
  - Performs generic functions (user management, data storage)

## The MIT iLab Architecture



#### Development responsibilities:

- \* Lab Server, Client:
  - Educator heavily involved in development
  - Registered with Service Brokers around World
- Service Broker:
  - Developed by MIT, open source
  - > Has well defined software interfaces

## The MIT iLab Architecture



#### Management responsibilities:

- Lab management (i.e. lab policy):
  - performed by lab provider
- Service Broker:
  - > User registration, authentication
  - User data storage and archiving
  - Responsibility of user's institution

# Unique Issues for iLabs in developing countries

Opportunities:

- Paucity of labs
- Great need for engineers

#### Challenges:

- Limited access to networked computers and educational software tools
- Limited appreciation of versatility of computer
- Severe bandwidth limitations

## **Bandwidth limitations**

(example: Makerere University, Kampala)





satellite gateway to Internet



academic buildings networked at 10/100 Mb/s

For comparison, MIT's bandwidth is 8 Gb/s (all data for Nov. 2006)

### **World Submarine Optical Fiber Systems**



- Limited reach of optical fiber systems
- Limited national networks
- Similar problems in other regions in the World

## **Consequences for iLabs** (and other rich educational resources)

- Need to deploy educational resources locally
- Solutions engineered in the developed world not necessarily effective across digital divide
  - → need to engage developing countries in educational technology innovation
- Pedagogy likely to be different in bandwidth starved situations
  - $\rightarrow$  need to be ready to experiment and modify



Average Applet download time at OAU reduced from 79" to 22"



## iLab development in Africa



#### Kayode Ayodele (OAU, Nigeria)



#### **OAU Opamp iLab**



## Sustainability-The iLab Consortium

Need for an iLab Consortium:

- to create an efficient market place for sharing and trading access to iLabs
- to support communities of scholars created around iLabs
- to lead evolution of iLab Architecture



Foundation, Non-Profit & Government

## Conclusions



- iLabs will enhance science and engineering education
- iLabs and their educational content will be broadly shared around the world
- iLabs can provide a path for the developed world to support education in the developing world
- iLab Architecture: scalable framework to support iLab dissemination around the world

## "If You Can't Come to the Lab... the Lab Will Come to You!"



(Earth at 89 GHz; courtesy of J. Grahn, Chalmers U.)