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Abstract

In this article the topic of option pricing using lattices is re-examined. A moment matching technique
and the method of finite differences are used to develop a parametrization for trinomial and binomial
lattices. In addition, the CRR model is revisited for which alternative up and down factors are provided.

Introduction

As a result of the famous paper by Black and Scholes (1973), the last three decades have recorded a
tremendous success in the valuation of options ranging from the simple vanilla options to more complex
options. However, as closed form solutions are rare (especially for exotic options), numerical solutions
are used as the best substitutes.

One such method is based on approximating the underlying continuous process with an appropriate dis-
crete process. This method is commonly referred to as the moment matching technique. In this class
are the binomial models of Cox et al. (1979)(in short CRR), Rendleman and Bartter (1979), Trigeorgis
(1991) and the ABMC and ABMD models of Jabbour et al. (2001). The parameters for the binomial
models of Cox et al.; Trigeorgis ; Rendleman and Bartter were determined by equating the mean and
variance of the log-transformed underlying distribution to the mean and variance respectively of the bi-
nomial approximating distribution. The ABMC model of Jabbour et al. was obtained by matching the
mean and standard deviation of the (non-transformed) underlying lognormal distribution with the mean
and standard deviation respectively of the approximating discrete distribution, while the ABMD was ob-
tained by matching the mean and variance of the proportionate change in the value of the underlying asset.

The moment matching technique was extended to trinomial lattice by Boyle (1986, 1988). In Boyle’s
method, jump probabilities were obtained by matching the mean and variance of the approximating dis-
tribution with the mean and variance respectively of the underlying lognormal distribution. To ensure
nonnegative probabilities, a constrained parameter for the jump parameters was introduced. Boyle also
derived a five-jump model to approximate a bi-variate lognormal distribution. Extending this model
to three or more state variables was difficult because of the non-negativity requirement of the jump
probabilities. By using an alternative process, Boyle et al. (1989) were able to overcome this problem.
Kamrad and Ritchken (1991) used a moment matching technique to match the mean and variance of the
log transformed underlying distribution. Their model extends well to any number of state variables and
includes many existing models as special cases. Jabbour et al. (2005) provided a step by step moment
technique for developing an n−order multinomial lattice parametrization for a single-state option pricing
model. Chen et al. (2002) discussed a log-transformed trinomial approach to option pricing and found
out that various numerical procedures in the option pricing literature are embedded in their approach
with choices of different parameters. They compared the efficiency of numerous schemes and were able
to conclude that the equal probability trinomial specification of He (1990) and Tian (1993), and the
sharpened trinomial specification of Omberg (1988) outperformed others.

What is common to all these models is that a moment matching technique is used to develop a discrete
process consistent with the underlying stochastic process in the sense that for each time step, the mean
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and variance of the underlying continuous distribution is matched with the mean and variance of the dis-
crete distribution respectively. The efficiency of these models depend on how good these approximations
are. A more efficient scheme takes less computational time than a less efficient one.

An alternative method is to approximate the Black and Scholes partial differential equation with an
appropriate difference scheme. In this class are the well known finite difference schemes of Brennan and
Schwartz (1977, 1978).

In this article two tasks are carried out. The first task employs the two methods mentioned above to
develop a trinomial approximating model. Finite differences are used to deduce probabilities for the
jump approximating process and with these probabilities, a moment matching technique is then used to
determine jump amplitudes that are consistent with the underlying distribution. This approach gives a
more general parametrization of the trinomial jump process from which several models can be deduced by
making some simplifying assumptions. In particular, binomial models arise by setting the middle jump
probability equal to zero. As a result another parametrization of the two jump process is given.

The second task is to re-examine the well known binomial model of Cox et al. (1979). It is well known
(Trigeorgis, 1991, p.319) (Jabbour et al., 2001, p.992) that the CRR model can give rise to negative
probabilities. Moreover, the model matches the mean of the underlying distribution but the variance is
only matched in the limit as the size of the time steps tends to zero. A correction of this deficiency is
given. The resulting models offer some flexibility in the specification of jump amplitudes.

Trinomial Lattices

Let F (t, St) be the time t price of a contingent claim whose pay off at a fixed terminal time T is of the form
Φ(ST ). Under the assumptions of the Black-Scholes model, F satisfies the following partial differential
equation:





∂F
∂t + rS ∂F

∂S + 1
2S2σ2 ∂2F

∂S2 − rF = 0, 0 ≤ t ≤ T

F (T, S) = Φ(S),
(1)

where the process S is defined by (A1) and r is the deterministic short rate of interest.

Using the transformation (A2) and Ito’s Lemma, (1) can be reduced to the following PDE with constant
coefficients:





∂F
∂t + (r − σ2

2 )∂F
∂x + 1

2σ2 ∂2F
∂x2 − rF = 0, 0 ≤ t ≤ T

F (T, x) = Φ(ex) .

(2)

Let us form a discretization of (2). With T as the fixed time to maturity and N the number of discrete
time points, let ∆x and ∆t = T

N be the mesh sizes. If xj = j∆x, tn = n∆t, 0 ≤ n ≤ N, j ∈ Z, then
Fn

j = F (tn, xj) = F (n∆t, j∆x) is the value of the numerical approximation at (n∆t, j∆x).

Taking the backward difference discretization for time and the second order discretization for space, yields
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the following difference scheme:

Fn+1
j − Fn

j

∆t
+

(
r − σ2

2

)
Fn+1

j+1 − Fn+1
j−1

2∆x
+

σ2

2
Fn+1

j−1 + Fn+1
j+1 − 2Fn+1

j

∆x2
− rFn

j = 0,

for j ≥ 1, 0 ≤ n ≤ N − 1, (3)

from which one can deduce that,

Fn
j =

1
1 + r∆t

{(
σ2∆t

2∆x2
+

∆t(r − σ2

2 )
2∆x

)
Fn+1

j+1 +
(

1− σ2∆t

∆x2

)
Fn+1

j

}

+
1

1 + r∆t

{
σ2∆t

2∆x2
− ∆t(r − σ2

2 )
2∆x

}
Fn+1

j−1 , j ≥ 1, 0 ≤ n ≤ N − 1. (4)

Equation (4) can be written as

Fn
j =

1
1 + r∆t

(
q1F

n+1
j+1 + q2F

n+1
j + q3F

n+1
j−1

)
, j ≥ 1, 0 ≤ n ≤ N − 1;

where

q1,3 =
σ2∆t

2∆x2
± ∆t(r − σ2

2 )
2∆x

, q2 = 1− q1 − q3. (5)

With the condition

∆x ≥ max
{

σ
√

∆t, |µ|∆t
}

, µ = r − σ2

2
, (6)

one can interpret q1, q2 and q3 as probabilities that the stock will jump to the next random value at
the end of the current period. In other words, if the current stock price is St, then, over the single
period (t, t + ∆t), the stock can jump to a1St with probability q1, to a2St with probability q2 and to
a3St with probability q3 where a1 > a2 > a3 and a1 > 1+ r̂ > a3. Here r̂ is the single period risk free rate.

A moment matching technique is then used to determine the jump amplitudes a1, a2 and a3 which are
consistent with the underlying continuous distribution.

As in (A2), the log-transformed equivalent of the discrete approximating process is used. Thus, if
bj = ln(aj), j = 1, 2, 3 then, the random variable Y defined as

Y =





b1 with probability q1

b2 with probability q2

b3 with probability q3

is the discrete distribution used to approximate the continuous underlying normal distribution in (A3).

Equating the mean and variance of the discrete moments with the respective mean and variance of the
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continuous distribution1 yields the following system of two equations in three unknowns.

q1b1 + q2b2 + q3b3 = µ∆t, (7)
q1b

2
1 + q2b

2
2 + q3b

2
3 = σ2∆t + (µ∆t)2. (8)

The solution to (7) and (8) in terms of b2 is

b1 =
−B +

√
B2 − 4AC

2A
,

b3 =
−B −√B2 − 4AC

2A
,

where

A =
1

2θ4
− µ

√
∆t

2θ3σ
,

B = b2

(
µ
√

∆t

θσ
+

1
θ4
− 1

θ2
− µ

√
∆t

σθ3

)
+

(
µ2
√

∆t3

θσ
− µ∆t

θ2

)
,

C =

(
1− 1

2θ2
+

1
2θ4

+
µ
√

∆t

2θσ
− µ

√
∆t

2θ3σ

)
b2
2 − 2µ∆t(1− 1

θ2
)b2

+(µ∆t)2
(

1− 1
2θ2

− µ
√

∆t

2θσ

)
− σ2∆t

(
1

2θ2
+

µ
√

∆t

2θσ

)
,

θ =
∆x

σ
√

∆t
.

With the jump amplitudes exp(bj) and the corresponding jump probabilities qj , j = 1, 2, 3, the trino-
mial model is said to be calibrated. The free variables b2 and θ provide an infinite number of ways in
which a three jump process can be calibrated2. However, for purposes of computational efficiency, some
simplifying restrictions are necessary. Three such restrictions are discussed.

(a) The restriction p2 = 0 reduces the trinomial model to the binomial case. This case will be investi-
gated a little further in Section .

(b) The restriction3 b2 = b1 + b3 = 0 yields

b1 = σ

√
∆t

1− q2
and b3 = −σ

√
∆t

1− q2
. (9)

The resulting model is that of Kamrad and Ritchken (1991).

1The mean and variance of the continuous distribution are given in the appendix.
2θ is a free variable in the limits of condition 6.
3For consistency in regard to equation (8), powers of ∆t higher than one are neglected.
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Let us remember that in the limits of condition (6) there still exists an infinite number of ways to
choose q2. Indeed, Kamrad and Ritchken (1991) computed the difference between the true Black
and Scholes value and computed European call prices using a trinomial lattice and found out that
for values of q2 close to one-third, the errors were very small. Horasanli (2007) compares the speed
and rate of convergence of the trinomial model of Kamrad and Ritchken (1991) (with q2 = 1/3 )
with the binomial model of Cox et al. and confirms that the rate of convergence for trinomial mod-
els is higher than in binomial models, but the former models are computationally more expensive
because they require more computer memory.4

When the jump amplitudes in (9) are plugged back back into (8), the resulting value is σ2∆t instead
of σ2∆t + (µ∆t)2. This is the drawback of this approximating process and was noted in the work
of Brennan and Schwartz (1978).

Yet another specification would be the following:

b1 = σα

√
∆t

1− q2
, α =

√
1 +

(µ

σ

)2

∆t and b3 = −σα

√
∆t

1− q2
. (10)

Specification (10) gives the correct variance but with a higher mean.
As a remark, Kamrad and Ritchken wrote that any choice of λ = 1√

1−q2
≥ 1 makes q1 > 0, q2 > 0

and q3 > 0. This is not always the case though. For example, if r = 4%, σ = 6%, λ =
√

5 and
∆t = 1

5 , then q3 will be negative. Thus, for a given r and σ; ∆x and ∆t must be chosen in such a
way that condition (6) is not violated.

(c) A relatively more general restriction is to have b1 + b3 = 2b2 with b2 not necessarily equal to zero
as in (b) above. In this case, we get the following jump amplitudes:

b1,3 = µ∆t

(
1− σ√

σ2 − µ2∆t

)
± σ2

√
∆t√

(σ2 − µ2∆t)(1− q2)
, (11)

b2 = µ∆t

(
1− σ√

σ2 − µ2∆t

)
. (12)

The jump parameters in (11)-(12) were discussed in the work of Chen et al. (2002).

Binomial Models

Letting σ2∆t
∆x2 = 1 in (5) gives

q = q1 =
1
2

+
µ

2σ

√
∆t and q3 =

1
2
− µ

2σ

√
∆t. (13)

These are the jump probabilities for the binomial model. The corresponding jump amplitudes are derived
from the following equations:

qb1 + (1− q)b3 = µ∆t,

4For N iterations, the trinomial model will require
N(N+1)

2
more than a binomial model.
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q(1− q)(b1 − b3)2 = σ2∆t.

In other words,

b1,3 = µ∆t± σ
√

∆t




√
σ ∓ µ

√
∆t

σ ± µ
√

∆t


 .

Hence, the following binomial approximating model to the continuous distribution given in (A4).

St+∆t =





Ste
b1 with risk neutral probability q,

Ste
b3 with risk neutral probability 1− q.

(14)

Below, model (14) will be referred to as the FDMM binomial model.

Some specifications that are already known can be deduced as special cases of FDMM. For example, in
(13), if ∆t → 0, Then, q → 1

2 . Therefore,

St+∆t =





Ste
µ∆t+σ

√
∆t with risk neutral probability 0.5,

Ste
µ∆t−σ

√
∆t with risk neutral probability 0.5.

(15)

The binomial model (15) was discussed by Jarrow and Rudd (1983) and Chen et al. (2002).

CRR Model Revisited

Assume that b1 + b3 = 0 and solve equations (14) and qb2
1 + (1− q)b2

3 = σ2∆t instead of (14), to get the
following specifications.

St+∆t =





Ste
σ
√

∆t with risk neutral probability 1
2 + µ

2σ

√
∆t,

Ste
−σ
√

∆t with risk neutral probability 1
2 − µ

2σ

√
∆t.

(16)

This model was discussed by Cox et al. (1979). It can also be deduced from the trinomial model of
Kamrad and Ritchken (1991) by setting the probability of the middle jump equal to zero.

Using a replicating portfolio technique and the no arbitrage assumption, Cox et al. (1979) also derived
the following binomial model:

St+∆t =





Ste
σ
√

∆t with risk neutral probability q = er∆t−d
u−d ,

Ste
−σ
√

∆t with risk neutral probability 1− q = u−er∆t

u−d .

(17)
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In fact, it5 is generally understood that the meaning of the CRR model is the same as (17). Unless
∆t → 0, equation (19) shows that the CRR model in (17) is not consistent with the underlying lognormal
distribution.

qu + (1− q)d = er∆t. (18)
u2q + d2(1− q)− (qu + (1− q)d)2 = (u + d)er∆t − 1− e2r∆t

= (eσ
√

∆t + e−σ
√

∆t)er∆t − 1− e2r∆t. (19)

Clearly, the mean is matched but the variance is not. Note that with q as in (17), any value of u and
d would satisfy (18). The required modification is therefore to use risk-neutral probabilities in (17) and
match the second central moment of the discrete distribution to the variance of the continuous distribution
in (A5). This gives the correct u and d. That is,

u2q + d2(1− q)− (qu + (1− q)d)2 = (e(2r+σ2)∆t − e2r∆t),

⇔ q(1− q)(u− d)2 = (e(2r+σ2)∆t − e2r∆t),

⇔ (er∆t − d)(u− er∆t) = (e(2r+σ2)∆t − e2r∆t),

⇔ u =
e(2r+σ2)∆t − der∆t

er∆t − d
.

Let
ud = λ. (20)

Then,

u =
e−r∆t

2

(
λ + e(2r+σ2)∆t +

√(
λ + e(2r+σ2)∆t

)2 − 4λe2r∆t

)
(21)

and

d =
e−r∆t

2

(
λ + e(2r+σ2)∆t −

√(
λ + e(2r+σ2)∆t

)2 − 4λe2r∆t

)
. (22)

Equations (20)-(22) represent jump amplitudes for the modified CRR (MCRR) binomial model. The
most common specification is to have λ = 1. In fact, any value of λ sufficiently close to one yields good
results. For example, the choice λ = er∆t seems natural.

Comparison of Numerical Methods

Horasanli (2007), Kamrad and Ritchken (1991) discussed the rates of convergence for both trinomial and
binomial models, and noted that for the same number of iterations, the former yield small errors (with
respect to the Black and Scholes model) but are computationally more expensive.
Figure 1 shows errors between the true Black and Scholes and computed European option prices using
binomial and trinomial models for different iterations. The trinomial model used here is one described by

5Using Taylor series expansion, it can be shown that probability q in (17) is equivalent to probability 1
2

+ µ
2σ

√
∆t in

(16).
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Figure 1: Convergence rates of Trinomial and Binomial models for a European put option. The number
of time points N increases from 50 to 2000. S0 = 100, r = 0.06, E = 110, σ = 0.3, q2 = 1/3 and T = 0.5.

equations (5) and (10) (with q2 = 1
3 ), while the binomial model is the MCRR (with λ = 1). The current

stock price S0 = 100, the strike price E = 110, time remaining to maturity T = 6 months, the riskfree
rate r = 6% and the volatility σ = 30%. Clearly, the amplitudes (representing errors) in the binomial
model are bigger than the amplitudes in the trinomial model.

A finite difference approach (trinomial model) for pricing lookback options is included in the appendix.
This model can be viewed as an extension of the single state variable binomial model for pricing lookback
options which was proposed by Cheuk and Vorst (1997). Dai (2000) showed that the speed of convergence
for the model of Cheuk and Vorst (1997) was low due to a poor approximation of the Neumann condition.
A better speed of convergence can be attained if one used a trinomial model of Kamrad and Ritchken
(1991) with the right boundary conditions.

FDMM and MCRR binomial model are compared with the CRR model. First and foremost, the CRR
model is consistent with the continuous model only in the limit (as ∆t → 0), whereas the MCRR model is
consistent with the continuous model for any time step. Moreover, it is known (See for example Trigeor-
gis, 1991, p.319), (Jabbour et al., 2001, p.992) that the CRR model can give rise to negative probabilities,
and is hence unstable.

In Figure 2, CRR, MCRR (with λ = 1) and FDMM binomial methods are compared by plotting values
for a European put option at the money for an increasing number of time points N and for different
maturities. The dotted graph represents Black and Scholes values. Figure 3 shows absolute errors with
respect to the Black and Scholes values. The KEY to plots in Figure 2 is given in Figure 3.
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Figure 2: Convergence of binomial models for a European put at the money. The number of time points
N increases from 50 to 1000. S0 = 100, r = 0.06, σ = 0.3.
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Figure 3: Error in the binomial models for a European Put option at the money for varying maturities.
The number of time points N increases from 50 to 1000. S0 = 100, σ = 0.3, r = 0.06.

Observations

Put option values derived from the three binomial models do coincide for short lived options at the
money. This is also true for short lived options in the money and out of the money (Figure 4). For longer
maturities (more than one year), the FDMM options values coincide with CRR option values (Figures 2
and 4). The MCRR option values are slightly better than the CRR and FDMM for long lived options at
the money (Figures 2 and 3). This advantage disappears for out of the money and in the money options
(Figure 4).

The drawback of many binomial models is that the convergence to the continuous model of Black and
Scholes is non-monotonic. The FDMM and MCRR are no better in this respect. Tian (1999) developed a
flexible binomial (FB) model with a ’tilt’ parameter that alters the shape and span of a binomial lattice.
By recalibrating the binomial model through the tilt parameter, an improvement in the convergence of
CRR model is made. For the put option at the money, FDMM and MCRR binomial models perform as
good as the FB model.

Conclusion

An explicit finite difference scheme was used to determine jump probabilities for a log-transformed tri-
nomial lattice and a moment matching technique was then used to determine the corresponding jump
amplitudes. For computational efficiency, some restrictions were made on the middle jump amplitude
and as a result trinomial models in Kamrad and Ritchken (1991); Horasanli (2007) and Chen et al. (2002)
were derived. In addition, a new parametrization for the binomial option pricing model was given.

The famous CRR binomial option pricing model was re-examined and alternative jump amplitudes were
given. Unlike the CRR model which is only consistent in the limit as the size of time steps tends to
zero, the modified model is consistent with the underlying continuous distribution at all time steps. The
binomial models proposed converge to the continuous limit in the same way the CRR model converges to
the continuous model of Black and Scholes. In particular, the convergence is non-monotonic. One noted
advantage though is that, for the put options at the money, the MCRR model exhibit slightly smaller
errors with respect to the true values.
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Figure 4: Convergence of binomial models for a European Put as the number of time points N increases
from 50 to 1000. S0 = 90, Strike price E = 100, r = 0.06, σ = 0.3.
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Appendix

Mean and Variance of a Geometric Brownian Motion

Consider a stochastic process S that follows (in a risk-neutral world) an Ito process

dS = rSdt + σSdW, (A1)

where W is a Wiener process defined on (Ω, F,P). The instantaneous risk-free rate r and volatility σ of
the underlying stochastic variable are considered to be deterministic constants.

Letting
X = ln S (A2)
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and using Ito’s Lemma gives

dX = (r − σ2

2
)dt + σdW,

whose solution over any time interval (t, t + ∆t) is

Xt+∆t −Xt = (α− σ2

2
)∆t + σ∆W ; ∆W = Wt+∆t −Wt ∼ N(0, ∆t). (A3)

From equation (A3) one can deduce that,

St+∆t = Ste
(r−σ2

2 )∆t+σ∆W , (A4)

where St is known at time t.

The moment generating function M∆W (.) of ∆W is e
∆t(.)

2 . Therefore,

E(St+∆t) = Ste
(r−σ2

2 )∆tM∆W (σ) = Ste
r∆t

and

E(S2
t+∆t) = S2

t e2(r−σ2
2 )∆tM∆W (2σ) = S2

t e(2r+σ2)∆t.

The variance of the return process St+∆t

St
is given as

V ar

(
St+∆t

St

)
= E

(
St+∆t

St

)2

−
(

E
St+∆t

St

)2

= (e(2r+σ2)∆t − e2r∆t). (A5)

Pricing of Lookback Options

Let St be the exchange rate between the domestic currency and the foreign currency and let rd and rf

be the domestic and foreign short rates respectively, and are assumed to be deterministic constants.

The maximum Mt and the minimum processes mt of St are defined as

Mt = max
0≤u≤t

Su, mt = min
0≤u≤t

Su.

We want to determine a fair price of a floating strike lookback call option.6

The Black and Scholes PDE for the price of a European currency lookback call option is given by





∂C
∂t + S(rd − rf )∂C

∂S + 1
2S2σ2 ∂2C

∂S2 − rdC = 0, 0 ≤ m ≤ S, 0 ≤ t ≤ T,

C(T, S, m) = S −m, ∂C
∂m (t,m, m) = 0.

(B1)

6For a call, the terminal payoff is ST −mT and in case of a put, the terminal payoff is MT − ST .
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Using the transformation x = ln( S
m ), SV (t, x) = C(t, m, S) and Ito’s lemma, equation (B1 ) can be

transformed into





∂V
∂t +

(
rd − rf + σ2

2

)
∂V
∂x + 1

2σ2 ∂2V
∂x2 − rfV = 0, x > 0, 0 ≤ t ≤ T

V (T, x) = 1− e−x, ∂V
∂x (t, 0) = 0.

(B2)

Similarly, as in (3), a discretization of equation (B2) yields the following explicit difference scheme:

V n
j =

1
1 + rf∆t






 σ2∆t

2∆x2
+

∆t
(
rd − rf + σ2

2

)

2∆x


V n+1

j+1 +
(

1− σ2∆t

∆x2

)
V n+1

j

+


 σ2∆t

2∆x2
−

∆t
(
rd − rf + σ2

2

)

2∆x


V n+1

j−1



 , j ≥ 1, 0 ≤ n ≤ N − 1.

The discretization of the Neumann boundary condition ∂V
∂x (t, 0) = 0 gives

V n+1
−1 = V n+1

1 . (B3)

Therefore,

V n
0 =

1
1 + rf∆t

{(
σ2∆t

∆x2

)
V n+1

1 +
(

1− σ2∆t

∆x2

)
V n+1

0

}
, 0 ≤ n ≤ N − 1; (B4)

and the terminal condition is
V N

j = 1− e−j∆x, j ≥ 0. (B5)

Define ∆x = λσ
√

∆t, a1 = e∆x, a3 = e−∆x. Then, equations (B3)-(B5) can be re-arranged into the
following single equation:





V n
j = 1

1+rf∆t

{
q̂1V

n+1
j+1 + q̂2V

n+1
j + q̂3V

n+1
j−1

}
; j ≥ 1, 0 ≤ n ≤ N − 1,

V n
0 = 1

1+rf∆t

{
(1− q̂2)V n+1

1 + q̂2V
n+1
0

}
; 0 ≤ n ≤ N − 1,

V N
j = 1− aj

3, 0 ≤ j ≤ N ;

(B6)

where

q̂1,3 =
1

2λ2
±
√

∆t
(
rd − rf + σ2

2

)

2λσ
, q2 = 1− q1 − q3.

Once again we recognize risk neutral probabilities q1, q2 and q3 on imposing the nonnegativity condition
similar to (6).
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The (trinomial) model in (B6) can be viewed as an extension of a single state variable binomial model
proposed by Cheuk and Vorst (1997) for pricing lookback options. In their model, Cheuk and Vorst set
∆x = σ

√
∆t and then approximated the Neumann boundary condition by

V n+1
−1 = V n+1

0 (B7)

instead of (B3). This way, they were able to approximate the continuous evaluation model with the
binomial model. Ideally, the model developed by Cheuk and Vorst (1997) can be viewed as the binomial
model of Cox et al. (1979) applied to pricing of lookback options while the model in (B6) can be viewed
as the trinomial model of Kamrad and Ritchken (1991) applied to pricing of lookback options. Dai (2000)
noted that the model of Cheuk and Vorst was very slow in convergence and this was attributed to the
poor approximation in (B7). Dai then introduced a correction term and was able to obtain better results.
Since (B3) is the ’true’ approximation of the Neumann condition, the convergence of trinomial results
will be much better than the binomial model and also better than the improved version of Dai (2000).
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