MIT iLabs: Laboratories Without Frontiers

Jesús A. del Alamo
MIT

October 27-30, 2007

Sponsorship: Carnegie Corp. of New York, NSF, Microsoft Corp.
Motivation to iLabs

- There is enormous educational value in hands-on laboratory experiences

- But, conventional labs...
 - ... are expensive and have complex logistics
 - ... can’t easily be shared

- iLabs: real laboratories that are accessed through the Internet from anywhere at any time
iLabs at MIT

Dynamic signal analyzer (EECS, deployed 2004)

Microelectronics device characterization (EECS, deployed 1998)

ELVIS (EECS, deployed 2006)

Polymer crystallization (Chem. E., deployed 2003)

Shake table (Civil Eng., deployed 2004)

Heat exchanger (Chem. E., deployed 2001)
Microelectronics Device Characterization iLab
Typical Assignment

Transistor characterization project:

- Measure transistor characteristics
- Extract transistor parameters
- Compare measurements with class models

Also, do whatever else you want with the transistor…
iLab Capacity

Oct. 13-20, 2000
(~100 students)

- When do students carry out their assignment?
- What is the lab system capacity?
iLab Capacity

System capacity: > 2,000 users/week > 15,000 experiments/week

Oct. 13-20, 2000
(~100 students)

exercise out on Friday

exercise due on Friday
over 5400 student users (for credit) since 1998 from 4 different continents
iLab: the Opportunities

■ Order of magnitude more laboratories available to our students

■ Unique labs:
 ❖ Unusual locations, expensive equipment, rare materials

■ Rich pedagogical experiences:
 ❖ More lab time available to students
 ❖ GUI to lab integrating graphing, simulation, collaboration, tutoring

■ Worldwide communities of scholars created around labs sharing content
iLab: the Challenges

■ Developing an iLab from scratch is a lot of work!
 ❖ Great attention needed to user scalability
 ❖ Needs to be done by domain specialist

■ Managing a broadly shared iLab is also a lot of work!
 ❖ Disincentive for owner to share lab

■ Key challenge: iLab Scalability
The MIT iLab Architecture

Three tier architecture:

- **Lab Server**: brings experimental setup online
- **Client**: GUI to lab
- **Service Broker**:
 - Serves GUI, mediates between Client and Lab Server
 - Performs generic functions (user management, data storage)
The MIT iLab Architecture

- Development responsibilities:
 - Lab Server, Client:
 - Educator heavily involved in development
 - Registered with Service Brokers around World
 - Service Broker:
 - Developed by MIT, open source
 - Has well defined software interfaces
Management responsibilities:

- Lab management (i.e. lab policy):
 - performed by lab provider

- User management performed at Service Broker:
 - User registration, authentication
 - User data storage and archiving
 - Responsibility of user’s institution
Unique Issues for iLabs in developing countries

- **Opportunities:**
 - Paucity of labs
 - Great need for engineers

- **Challenges:**
 - Limited access to networked computers and educational software tools
 - Limited appreciation of versatility of computer
 - Severe bandwidth limitations
Bandwidth limitations
(example: Makerere University, Kampala)

campus wide single-mode optical fiber (2 Gb/s)

academic buildings networked at 10/100 Mb/s

metropolitan network (total campus bandwidth=21 Mb/s)

satellite gateway to Internet

For comparison, MIT’s bandwidth is 8 Gb/s (all data for Nov. 2006)
World Submarine Optical Fiber Systems

- Limited reach of optical fiber systems
- Limited national networks
- Similar problems in other regions in the World
Consequences for iLabs (and other rich educational resources)

- Need to deploy educational resources *locally*
- Solutions engineered in the developed world not necessarily effective across digital divide
 - need to engage developing countries in educational technology innovation
- Pedagogy likely to be different in bandwidth starved situations
 - need to be ready to experiment and modify
Local Service Brokers

Installed at OAU, MUK and UDSM

Average Applet download time at OAU reduced from 79” to 22”
iLab development in Africa

OAU Opamp iLab

Kayode Ayodele (OAU, Nigeria)
Sustainability - The iLab Consortium

Need for an iLab Consortium:

- to create an efficient market place for sharing and trading access to iLabs
- to support communities of scholars created around iLabs
- to lead evolution of iLab Architecture
Conclusions

- iLabs will enhance science and engineering education
- iLabs and their educational content will be broadly shared around the world
- iLabs can provide a path for the developed world to support education in the developing world
- iLab Architecture: scalable framework to support iLab dissemination around the world
“If You Can’t Come to the Lab... the Lab Will Come to You!”

(Earth at 89 GHz; courtesy of J. Grahn, Chalmers U.)